Abstract:
A display apparatus according to example embodiments may include a light source; an all-in-one type light guide plate; a reflective plate; and a display panel. The all-in-one type light guide plate may include a light guide member and light emitting members, wherein the light guide member reflects light incident from the light source toward the light emitting members, and the light emitting members protrude from one side of the light guide member and emit light incident from the light guide member. The light guide member and the light emitting members may be integrally formed or individually combined to form an all-in-one type light guide plate. The display apparatus may form an image using light from a backlight unit and external light.
Abstract:
Provided is a backlight device that includes: a light guide panel having a diffraction pattern for emitting light through an emission surface of the light guide panel by diffracting light entering the light guide panel; and a chromatic dispersion compensation member that is an optical transmitting member located on a light emission side of the light guide panel and has a lattice pattern having a depth in a direction vertical to the emission surface of the light guide panel.
Abstract:
An illumination device for a liquid crystal display (LCD) is provided, including: a flat light guide plate having a light exit surface; at least one linear source unit integrally formed with a side of the flat light guide plate and extending along the at least one side of the flat light guide plate; one or more point light sources emitting light through at least one of the side surfaces of the linear light source unit; and a plurality of light exit holes vertically passing through the flat light guide plate and arranged in a longitudinal direction of the linear light source unit between the light exit surface of the flat light guide plate and the linear light source unit, wherein each of the light exit holes has a reflective surface that totally reflects light incident on the linear light source unit into the flat light guide plate.
Abstract:
A polarization mode dispersion compensation apparatus using a photonic crystal structure includes an optical signal splitter for splitting and outputting incident optical signals into optical signals of a first and second polarization state; an optical signal combiner for combining and outputting the optical signals of the first and second polarization states; an optical signal guide having a photonic crystal structure having a first waveguide and a longer and variable second waveguide; a signal tab for externally outputting a portion of the optical signals and for outputting a portion of the optical signals to a feedback unit; a feedback unit for measuring a dispersion degree of the first and second polarization states inputted from the signal tab, and for outputting a feedback signal for removing the polarization mode dispersion; and an effective optical path length variation unit for varying an effective optical path length of the second waveguide.
Abstract:
A reflective display device using photonic crystals includes a plurality of reflective color filters, each reflective color filter reflects a predetermined wavelength range of an incident visible light; and a plurality of optical switches disposed adjacent to and facing a corresponding one of the plurality of reflective color filters, each of the plurality of optical switches extracts a predetermined color by adjusting an intensity or on/off-frequency of light reflected from the corresponding one of the plurality of reflective color filters. Accordingly, a reflective display device using photonic crystals may have a simplified structure requiring no conventional reflecting mirror.
Abstract:
A waveguide including transmission areas which transmit an input optical signal. A coupling area is provided between the transmission areas and has a width narrower than a width of the transmission areas so that at least part of the optical signal transmitted through the transmission areas is branched to a neighboring optical member.
Abstract:
A three-dimensional (3D) image display apparatus and method are provided. The 3D image display apparatus includes an image generating unit configured to generate an image, an active optical device configured to change a propagation path of light containing the generated image, and provide the generated image to multiple viewpoints that are located along a first direction parallel to the image generating unit, and a varifocal lens configured to vary a focal position of the generated image along a second direction away from the image generating unit.
Abstract:
A multi-touch sensing display apparatus is provided. The multi-touch sensing display apparatus may include a back light unit, a display panel, a sensor unit on a display surface of the display panel, and a touch light source unit providing light to be diffused by a touch of a user so that the sensor unit senses the touch of the user. The touch light source unit may include a touch light source and a transparent light guide plate. The transparent light guide plate may include a light guiding unit and a plurality of light emitting units integrally formed with each other as a single body, wherein the light guiding unit guides light from the touch light source to an inside thereof, and the plurality of light emitting units protrudes from the light guiding unit and emits light from the light guiding unit.
Abstract:
A three-dimensional (3D) image display apparatus that includes a surface-light source device for emitting light in a direction which may be sequentially adjusted, is provided. The 3D image display apparatus includes a display panel for generating images by modulating the light emitted from the surface-light source device according to image information. The 3D image display apparatus also includes a controller for controlling the directivity adjustment of the light from the surface-light source device in a time-sequential manner and the image formation for each visual field of the display panel to be synchronized with each other.
Abstract:
A surface light source device is provided. The surface light source device includes a light source, a beam splitter configured to split a light irradiated from the light source into a plurality of light beams each having a different path, a diffusion unit configured to diffuse the plurality of light beams split by the beam splitter into a surface light, and a collimating unit configured to arrange the plurality of light beams diffused from the diffusion unit in one direction.