Abstract:
A lamp driving apparatus includes a change rate calculating section, a dimming transforming section and a power supplying section. The change rate calculating section calculates a change rate signal from an image signal corresponding to the image. The dimming transforming section outputs a digital dimming signal and an analog dimming signal, in response to a dimming signal provided from an external device and the change rate signal. The power supplying section provides the lamp with power, in response to a vertical synchronizing signal, the analog dimming signal and the digital dimming signal. Thus, although an instantaneous lamp current is increased, life and characteristics of the lamp will not be adversely influenced, and motion blur of a moving image may be removed.
Abstract:
A light generating device includes a body having discharge spaces generating light in response to a voltage signal, and electrodes providing the voltage signal to the discharge spaces. The discharge spaces are apart from each other and arranged substantially parallel with each other. The electrodes are disposed at external portions of the body. The body includes a first substrate, and a second substrate disposed on the first substrate. The second substrate includes space forming members and space dividing members. The discharge spaces are each formed between corresponding one of the space forming members and the first substrate. The space dividing members are each disposed between the adjacent space forming members. The space dividing members include connecting passages each connecting adjacent ones of the discharge spaces. A display device includes a display panel for displaying images using an image signal, a driving signal and light, the planar light generating device for providing the light to the display panel, and an inverter for generating the voltage signal to the planar light generating device.
Abstract:
A device for driving a display backlight, a method for driving a display backlight, and a display apparatus having a backlight driving device. The device, method, and display apparatus are capable of displaying a substantially uniform white light. A sensing unit senses light intensities for each of a plurality of colors of light emitted by the light emitting elements, and outputs sensing signals for each of the plurality of colors of light emitted by the light emitting elements. The signal processing unit processes the outputted sensing signals to output light intensity signals for each of the plurality of colors of light emitted by the light emitting elements. The control unit controls the light emitting elements to generate a substantially uniform white light by outputting driving signals based on the light intensity signals and a set of reference light intensity signals to control each of the plurality of colors of light emitted by the light emitting elements. Accordingly, increased uniformity of white light is provided.
Abstract:
A light generating device includes a body having discharge spaces generating light in response to a voltage signal, and electrodes providing the voltage signal to the discharge spaces. The discharge spaces are apart from each other and arranged substantially parallel with each other. The electrodes are disposed at external portions of the body. The body includes a first substrate, and a second substrate disposed on the first substrate. The second substrate includes space forming members and space dividing members. The discharge spaces are each formed between corresponding one of the space forming members and the first substrate. The space dividing members are each disposed between the adjacent space forming members. The space dividing members include connecting passages each connecting adjacent ones of the discharge spaces. A display device includes a display panel for displaying images using an image signal, a driving signal and light, the planar light generating device for providing the light to the display panel, and an inverter for generating the voltage signal to the planar light generating device.
Abstract:
An LCD shuts down an inverter when a supply time of a high current from the inverter to a lamp exceeds an allowable time, and also controls the allowable time according to an ambient temperature, thereby minimizing damage to a lamp due to overheating in a high-brightness driving operation.
Abstract:
In a power supply device whose safety is improved, a backlight assembly and a display apparatus having thereof, the power supply device includes a printed circuit board, a transformer and a securing cover. The transformer is disposed on the printed circuit board to change a first input voltage into a second voltage, and outputs the second voltage. The securing cover covers a portion where the second voltage is outputted. Accordingly, when a securing cover covers a portion where the high voltage is outputted, the safety of the power supply can be enhanced.
Abstract:
A surface light source unit and an LCD device having the same having an improved structure to minimize a dark portion caused by an outer electrode portion. The surface light source unit of the LCD device includes a discharge portion formed between a first substrate and a second substrate disposed opposite to the first substrate, a first outer electrode portion disposed on the first substrate inside the discharge portion to be supplied with power, a first frit disposed on the first substrate inside the discharge portion opposite the first outer electrode portion. The discharge portion performs a discharge according to the power supplied to the first outer electrode portion. Since the first frit increases the number of secondary emitting electrons, the dark portion can be minimized.
Abstract:
A backlight assembly device includes lamps, an inverter, a sensing unit, a normal lighting determiner and an inverter controller. The inverter applies a control signal to the lamps to control operation of the lamps. The sensing unit outputs sensing voltages in response to currents flowing in the lamps. The normal lighting determiner compares the sensing voltages to a reference voltage for determining an operating state of the lamps to output a determination signal and varies the reference voltage in response to a change in the operating state of the lamps. The inverter controller outputs the control signal in response to the determination signal.
Abstract:
A device of driving a light source for a display device is provided, which includes: a temperature sensor detecting a temperature near the light source; and an inverter controlling the light source depending on temperature information supplied from the temperature sensor. The inverter adjusts either or both of a driving frequency and a driving current of the light source depending on the temperature information. The inverter decreases the driving frequency when the detected temperature is lower than a first temperature, and the inverter increases the driving current when the detected temperature is lower than a second temperature lower than the first temperature.
Abstract:
A light emitting device includes a light emitting body disposed on a substrate, which has light emitting sections apart from each other, a light generating member assembled with the light emitting body, and a light reflecting member disposed on the substrate between the light emitting sections. The light generating member receives driving voltages to generate light from the light emitting body, and the light reflecting member reflects light traveling onto the light reflecting member. The light emitting device also includes a light reflection body and a supporting member disposed on the substrate between the light emitting sections. A display device includes the light emitting device, a display panel receiving the light from the light emitting body, which displays images using the light and image data externally provided, and a container receiving the light emitting device and the display panel.