Abstract:
A solid-state light emitting device comprises a solid-state light emitter (LED) operable to generate excitation light and a wavelength conversion component including a mixture of particles of a photoluminescence material and particles of a light reflective material. In operation the phosphor absorbs at least a portion of the excitation light and emits light of a different color. The emission product of the device comprises the combined light generated by the LED and the phosphor. The wavelength conversion component can be light transmissive and comprise a light transmissive substrate on which the mixture of phosphor and reflective materials is provided as a layer or homogeneously distributed throughout the volume of the substrate. Alternatively the wavelength conversion component can be light reflective with the mixture of phosphor and light reflective materials being provided as a layer on the light reflective surface. A wavelength conversion component, light emitting sign and light emitting signage surface are also disclosed.
Abstract:
An inventive LED-based lamp, lamp cover component, and methods for manufacturing thereof are disclosed which provides a light diffusive lamp cover having a diffusivity (transmittance) that is different for different areas (zones or regions) of the cover. The diffusivity and location of those areas are configured so that the emission pattern of the whole lamp meets desired emissions characteristics and optical efficiency levels. The diffusive cover may have any number of specifically delineated diffusivity areas. Alternatively, the cover may provide a gradient of increasing/decreasing diffusivity portions over the cover.
Abstract:
Disclosed herein are green-emitting, garnet-based phosphors having the formula (Lu1-a-b-cYaTbbAc)3(Al1-dBd)5(O1-eCe)12 :Ce,Eu, where A is selected from the group consisting of Mg, Sr, Ca, and Ba; B is selected from the group consisting of Ga and In; C is selected from the group consisting of F, Cl, and Br; and 0≦a≦1; 0≦b≦1; 0
Abstract:
Red-emitting phosphors may comprise a nitride-based composition represented by the chemical formula MaSrbSicAldNeEuf, wherein: M is at least one of Mg, Ca, Sr, Ba, Y, Li, Na, K and Zn, and 0 2+d/v and v is the valence of M. Furthermore, nitride-based red-emitting phosphor compositions may be represented by the chemical formula MxM′2Si5-yAlyN8:A, wherein: M is Mg, Ca, Sr, Ba, Y, Li, Na, K and Zn, and x>0; M′ is at least one of Mg, Ca, Sr, Ba, and Zn; 0≦y≦0.15; and A is at least one of Eu, Ce, Tb, Pr, and Mn; wherein x>y/v and v is the valence of M, and wherein the red-emitting phosphors have the general crystalline structure of M′2Si5N8:A.
Abstract:
A green-emitting phosphor having the formula AaBbCcOdNe:RE, wherein A is a positively charged divalent element; B is a positively charged trivalent element; C is a positively charged tetravalent element; and RE is a rare earth activator. The parameter a ranges from about 0.5 to about 1.5; the parameter b ranges from about 0.8 to about 3.0; the parameter c ranges from about 3.5 to about 7.0; the parameter d ranges from about 0.1 to about 3.0; and the parameter e ranges from about 5.0 to about 11.0. A is at least one of Mg, Ca, Sr, Ba, and Zn; B (the letter) is at least one of B (boron), Al, Ga, and In; C (the letter) is at least one of C (carbon), Si, Ge, and Sn; O is oxygen; N is nitrogen; and RE is at least one of Eu, Ce, Pr, Tb, and Mn.
Abstract:
An improved approach is described to implement an LED-based large area display which uses an array of single color solid state lighting elements (e.g. LEDs). In some embodiments, the panel comprises an array of blue LEDs, where each pixel of the array comprises three blue LEDs. An overlay is placed over the array of blue LEDs, where the overlay comprises a printed array of phosphor portions. Each pixel on the PCB comprised of three blue LEDs is matched to a corresponding portion of the overlay having the printed phosphor portions. The printed phosphor portions of the overlay includes a number of regions of blue light excitable phosphor materials that are configured to convert, by a process of photoluminescence, blue excitation light generated by the light sources into green or red and colored light. Regions of the overlay associated with generating blue light comprise an aperture/window that allows blue light to pass through the overlay.
Abstract:
Red-emitting phosphors may comprise a nitride-based composition represented by the chemical formula MaSrbSicAldNeEuf, wherein: M is at least one of Mg, Ca, Sr, Ba, Y, Li, Na, K and Zn, and 0 2+d/v and v is the valence of M. Furthermore, nitride-based red-emitting phosphor compositions may be represented by the chemical formula MxM′2Si5−yAlyN8:A, wherein: M is Mg, Ca, Sr, Ba, Y, Li, Na, K and Zn, and x>0; M′ is at least one of Mg, Ca, Sr, Ba, and Zn; 0≦y≦0.15; and A is at least one of Eu, Ce, Tb, Pr, and Mn; wherein x>y/v and v is the valence of M, and wherein the red-emitting phosphors have the general crystalline structure of M′2Si5N8:A.
Abstract:
Disclosed is an approach to implement a light emitting device with remote wavelength conversion. Lighting arrangements are disclosed which provides consistent color despite inconsistent light path lengths for phosphor light conversions.
Abstract:
A solid-state lamp comprising: an array of solid-state excitation sources and a photoluminescence wavelength conversion component comprising a layer of photoluminescence material and a coupling optic. The layer of photoluminescence material is remote to the excitation sources and the coupling optic is disposed between the excitation sources and the layer of photoluminescence material. The ratio of the photoluminescence material surface area of the layer of the photoluminescence material to the excitation source surface area for the array of solid-state excitation sources is at least 3 to 1.
Abstract:
A green and yellow emitting lutetium aluminate based photoluminescent material having the formula (Lu1-x-yGdxCey)3BzAl5O12C2z wherein: B is one or more of Mg, Sr, Ca or Ba; C is F, Cl, Br or I; 0