Abstract:
A display may have an array of pixels. Each pixel may have a light-emitting diode that emits light under control of a drive transistor. The organic light-emitting diodes may have a common cathode layer, a common electron layer, individual red, green, and blue emissive layers, a common hole layer, and individual anodes. The hole layer may have a hole injection layer stacked with a hole transport layer. Pixel circuits for controlling the diodes may be formed from a layer of thin-film transistor circuitry on a substrate. A planarization layer may cover the thin-film transistor layer. Lateral leakage current between adjacent diodes can be blocked by shorting the common hole layer to a metal line such as a bias electrode that is separate from the anodes. The metal line may be laterally interposed between adjacent pixels and may be formed on the planarization layer or embedded within the planarization layer.
Abstract:
A touch screen including display pixels with capacitive elements is provided. The touch screen includes first common voltage lines connecting capacitive elements in adjacent display pixels, and a second common voltage line connecting first common voltage lines. Groups of pixels can be formed as electrically separated regions by including breaks in the common voltage lines. The regions can include a drive region that is stimulated by stimulation signals, a sense region that receives sense signals corresponding to the stimulation signals. A grounded region can also be included, for example, between a sense region and a drive region. A shield layer can be formed of a substantially high resistance material and disposed to shield a sense region. A black mask line and conductive line under the black mask line can be included, for example, to provide low-resistance paths between a region of pixels and touch circuitry outside the touch screen borders.
Abstract:
An organic light emitting diode display includes a thin film transistor (TFT) substrate, which has TFTs for an array of pixels. Each TFT has a gate electrode, a source electrode, and a drain electrode. An organic layer is disposed over the TFT substrate. The organic layer has through-hole above the drain electrode. The display also includes pixel electrodes disposed over the organic layer. Each pixel electrode is connected to the drain electrode in the through-hole of the organic layer for each pixel. An organic light emitting diode (OLED) layer is disposed over the pixel electrode for each pixel. The organic light emitting layer is divided into pixels or sub-pixels by a pixel defining layer over the pixel electrode. The display further includes a common electrode and a conductive layer disposed over the OLED layer such that the conductive layer does not block light emission from the organic light emitting layer.
Abstract:
An organic light emitting diode display includes a thin film transistor (TFT) substrate, which has TFTs for an array of pixels. Each TFT has a gate electrode, a source electrode, and a drain electrode. An organic layer is disposed over the TFT substrate. The organic layer has through-hole above the drain electrode. The display also includes pixel electrodes disposed over the organic layer. Each pixel electrode is connected to the drain electrode in the through-hole of the organic layer for each pixel. An organic light emitting diode (OLED) layer is disposed over the pixel electrode for each pixel. The organic light emitting layer is divided into pixels or sub-pixels by a pixel defining layer over the pixel electrode. The display further includes a common electrode and a conductive layer disposed over the OLED layer such that the conductive layer does not block light emission from the organic light emitting layer.
Abstract:
A liquid crystal display (LCD) includes an array of pixels over a thin film transistor (TFT) substrate. The TFT substrate includes a TFT that has a first metal layer to form a gate electrode and a second metal layer to form a source electrode and a drain electrode for each pixel. The LCD also includes an organic insulation layer disposed over the TFT substrate, where the organic insulator layer has trenches on a top surface. The LCD further includes a third metal layer disposed over the organic insulation layer in the trenches, the trenches having a trench depth at least equal to the thickness of the third metal layer. The LCD also includes a passivation layer over the third metal layer, and a pixel electrode for each pixel over the passivation layer. The LCD further includes a polymer layer over the pixel electrode, and liquid molecules on the polymer layer.
Abstract:
A touch screen including display pixels with capacitive elements is provided. The touch screen includes first common voltage lines connecting capacitive elements in adjacent display pixels, and a second common voltage line connecting first common voltage lines. Groups of pixels can be formed as electrically separated regions by including breaks in the common voltage lines. The regions can include a drive region that is stimulated by stimulation signals, a sense region that receives sense signals corresponding to the stimulation signals. A grounded region can also be included, for example, between a sense region and a drive region. A shield layer can be formed of a substantially high resistance material and disposed to shield a sense region. A black mask line and conductive line under the black mask line can be included, for example, to provide low-resistance paths between a region of pixels and touch circuitry outside the touch screen borders.
Abstract:
Disclosed herein are liquid-crystal display (LCD) touch screens that integrate the touch sensing elements with the display circuitry. The integration may take a variety of forms. Touch sensing elements can be completely implemented within the LCD stackup but outside the not between the color filter plate and the array plate. Alternatively, some touch sensing elements can be between the color filter and array plates with other touch sensing elements not between the plates. In another alternative, all touch sensing elements can be between the color filter and array plates. The latter alternative can include both conventional and in-plane-switching (IPS) LCDs. In some forms, one or more display structures can also have a touch sensing function. Techniques for manufacturing and operating such displays, as well as various devices embodying such displays are also disclosed.
Abstract:
A touch screen including display pixels with capacitive elements is provided. The touch screen includes first common voltage lines connecting capacitive elements in adjacent display pixels, and a second common voltage line connecting first common voltage lines. The pixels can be formed as electrically separated regions by including breaks in the common voltage lines. The regions can include a drive region that is stimulated by stimulation signals, a sense region that receives sense signals corresponding to the stimulation signals. A grounded region can also be included, for example, between a sense region and a drive region. A shield layer can be formed of a substantially high resistance material and disposed to shield a sense region. A black mask line and conductive line under the black mask line can be included, for example, to provide low-resistance paths between a region of pixels and touch circuitry outside the touch screen borders.
Abstract:
One embodiment may take the form of a UV mask for use while curing sealant on LCD displays. The UV mask includes a mother glass and a UV mask layer on the mother glass. A UV absorption film is located adjacent the UV mask layer and an anti-reflection (AR) film is located adjacent the UV absorption film.
Abstract:
Processes for reducing physical contact to sheets of base film in roll-to-roll processing of touch sensors are disclosed. In one example, the process includes the use of rollers having rings circumferentially extending away from the roller and operable to contact the sheets of base film. The rings can be configured to contact portions of the sheet of base film away from touch sensor areas of the base film. The rings can further be configured to prevent the sheets of base film from contacting a shaft of the rollers. In another example, a reduced strength vacuum seal can be formed between a photo mask and the sheet of base film to reduce the amount of force applied to a passivation layer of the sheet of base film.