摘要:
A medical device is provided that comprises a lead assembly. The lead assembly includes at least one intra-cardiac (IC) electrode, an extra-cardiac (EC) electrode and a subcutaneous remote-cardiac (RC) electrode. The IC electrode is configured to be located within the heart. The EC electrode is configured to be positioned proximate to at least one of a superior vena cava (SVC) and a left ventricle (LV) of a heart. The RC electrode is configured to be located remote from the heart. An arrhythmia monitoring module is configured to analyze intra-cardiac electrogram (IEGM) signals from the at least one IC electrode to identify a potential atrial arrhythmia. An extra-cardiac impedance (ECI) module is configured to measure extra-cardiac impedance along an ECI vector between the EC and RC electrodes to obtain ECI measurements. The hemodynamic performance (HDP) assessment module is configured to determine a hemodynamic performance based on the ECI measurements. The arrhythmia monitoring module is configured to declare the potential atrial arrhythmia to be an atrial arrhythmia based on the hemodynamic performance determined from the ECI measurements. The medical device further provides the HDP assessment module that derives a current ECI waveform from current ECI measurements and compares the current ECI pattern with a prior ECI waveform that is derived from prior ECI measurements.
摘要:
In specific embodiments, a method to monitor pulmonary edema of a patient, comprises (a) detecting, using an implanted posture sensor, when a posture of the patient changes from a first predetermined posture to a second predetermined posture, (b) determining an amount of time it takes an impedance signal to achieve a steady state after the posture of the patient changes from the first predetermined posture to the second predetermined posture, where the impedance signal is obtained using implanted electrodes and is indicative of left atrial pressure and/or intra-thoracic fluid volume of the patient, and (c) monitoring the pulmonary edema of the patient based on the determined amount of time it takes the impedance signal to achieve the steady state after the posture of the patient changes from the first predetermined posture to the second pre-determined posture.
摘要:
Techniques are provided for evaluating heart failure within a patient. In one example, the implantable device detects a decrease, if any, in selected morphological parameters derived from the intracardiac electrogram (IEGM) that are indicative of possible heart failure, such as paced depolarization integrals (PDI) or peak-to-peak amplitudes of QRS-complexes. The device also detects a decrease, if any, in transthoracic impedance, which is also indicative of possible heart failure. Acute heart failure is indicated if there is a decrease in the morphological IEGM parameters but no significant decrease in transthoracic impedance. Chronic heart failure is indicated if there is a decrease in transthoracic impedance but no significant decrease in the morphological IEGM parameters. If both transthoracic impedance and the morphological IEGM parameters are found to be decreasing significantly, the device issues a warning of severe heart failure.
摘要:
A system and method of sensing relatively low magnitude signals of interest in a sensing environment with at least intervals of relatively high magnitude noise of comparable or overlapping frequency spectra as the signals of interest. The systems and methods can be implemented in an efficient, low-power manner to facilitate long term monitoring of low magnitude physiologic signals, for example in an in vivo or implantable manner. An amplifier can be arranged with a threshold detector driving a normally closed switch such that the input to or output from the amplifier can be opened when the noise exceeds a threshold. A filter, such as a moving average filter, can be included to smooth the amplified output and compensate for the amplified signal lost when the threshold is exceeded. The systems and method facilitate implantable nerve sensing in high noise environments, such as from myopotentials.
摘要:
An implantable cardiac stimulation device provides an intracardiac electrogram with reduced respiratory modulation effect. The device includes a sensing circuit that senses cardiac activity and provides an intracardiac electrogram signal extending over a plurality of cardiac cycles, a respiration monitor that monitors respiration associated with the sensed cardiac activity, and a cardiac cycle selector that selects a set of intracardiac electrogram cardiac cycles of the plurality of cardiac cycles in response to the monitored respiration. A processing circuit processes the selected set of intracardiac electrogram cardiac cycles to provide the intracardiac electrogram with reduced respiratory modulation effect.
摘要:
Techniques are provided for use by a pacemaker or other implantable medical device for detecting and tracking trends in cardiopulmonary fluid transfer rates—such as heart-to-lung fluid perfusion rates and lung-to-lymphatic system fluid excretion rates—and for detecting heart failure, dyspnea or other cardiopulmonary conditions. In one example, the device periodically measures transthoracic admittance values. A first exponential time-constant (k1) is determined using curve-fitting from admittance values obtained while the patient is in a sleep posture. Time-constant k1 is representative of the fluid perfusion rate. A second exponential time-constant (k2) is determined based on admittance values obtained while the patient is standing/walking/sitting. The second exponential time-constant (k2) is representative of the fluid excretion rate from the lungs. The device then detects trends, if any, in the time-constants (or in “DC” baseline values) to detect or predict medical conditions such as an imminent heart failure exacerbation.
摘要:
Diagnosing a patient's cardiac health through histogram analysis of thoracic impedance is described. Data values indicative of thoracic impedance are measured from a patient over a sample period that includes multiple respiratory cycles. The values are distributed across multiple bins of a histogram. A diagnostic value for use in diagnosing a patient's cardiac health is derived from values in one or more of the bins. As one example, a diagnostic value representing minimum thoracic impedance during the sample period can be derived from values in the lowest-valued bins. Diagnostic values can be computed for multiple sample periods in the same fashion. A trend analysis is performed on the diagnostic values to determine whether the patient's cardiac condition is improving or worsening. The trend may be presented in a graphical form to provide a visual tool for assessing the patient's condition over time.
摘要:
A method of identifying a potential cause of pulmonary edema is provided. The method includes obtaining one or more impedance vectors between predetermined combinations of the electrodes positioned proximate the heart. At least one of the impedance vectors is representative of a thoracic fluid level. The method also includes applying a stimulation pulse to the heart and sensing cardiac signals of the heart that are representative of an electrophysiological response to the stimulation pulse. The method further includes monitoring the cardiac signals and at least one of the impedance vectors with respect to time to identify the potential cause of pulmonary edema.
摘要:
The invention relates to an apparatus and method to assess the fluid level in lungs. An implantable medical device or external monitor is used to sense or monitor the patient's respiratory patterns to identify the presence of periodic breathing or Cheyne-Stokes Respiration (CSR) which is common in patients with congestive heart failure. A fluid index is used to assess the severity of congestive heart failure in a patient. A ratio of Δ blood gas/Σtotal lung volume can be used to determine the lung fluid index.
摘要:
An implantable cardiac stimulation device monitors the progression and/or regression of heart disease. The device comprises a sensing circuit that senses activity of a heart and provides an electrogram for each one of a plurality of cardiac cycles, an averaging circuit that averages a number of the plurality of electrograms at spaced apart intervals to provide averaged trend electrograms, and a data generator that provides a metric reflective of progression or regression of heart failure responsive to a difference between a current averaged trend electrogram and a previous averaged trend electrogram.