Abstract:
A capsule assembly for an endograft introducer is disclosed. The assembly comprises: a capsule retriever having a plug portion and a tail portion, the plug portion having a lead-in surface, the tail portion having an elongate body extending proximally from the plug portion to an end stop feature receiver; a capsule tube having an end stop feature at a proximal end thereof and terminating in a distal end, the end stop feature and the end stop receiver arranged such that proximal movement of the capsule tube relative to the plug portion is limited; and a capsule cavity inside the capsule tube, a proximal end of a prosthesis being receivable in the cavity. The capsule tube is slidably movable with respect to the capsule retriever to a position in which the distal end of the capsule tube is adjacent to the lead-in surface of the plug portion.
Abstract:
A stent for use in a medical procedure having opposing sets of curved apices, where the curved section of one set of apices has a radius of curvature that is greater than the curved section of the other set of apices. One or more such stents may be attached to a graft material for use in endovascular treatment of, for example, aneurysm, thoracic dissection, or other body vessel condition.
Abstract:
A prosthesis having a tubular body of a biocompatible graft material having a proximal end, a distal end, a lumen therethrough, and a sidewall. The prosthesis includes at least one perfusion branch extending from the sidewall of the tubular body and having a proximal end, a distal end, and a lumen therethrough, where the lumen of the perfusion branch is in temporary fluid communication with the lumen of the tubular body. The perfusion branch comprises a self-sealing component, that after predetermined period of time precludes fluid flow out of the distal end of the perfusion branch.
Abstract:
A first endoluminal prosthesis coupled to an inner catheter and a dilator tip is delivered to the body vessel via a guidewire and a delivery sheath in a conventional manner. After deployment of the first endoluminal prosthesis at the target site, the dilator and catheter are retracted from the body, leaving the delivery sheath in place. A second endoluminal prosthesis is housed within a peel-away sheath without a catheter or dilator tip, and is mated to the delivery sheath outside the patient. The second prosthesis is advanced from the peel-away sheath into the delivery sheath without the use of a dilator tip or catheter. As the second prosthesis is advanced into the delivery sheath from the peel-away sheath, the peel-away sheath is peeled away. The second prosthesis is advanced through the delivery sheath and delivered into an overlapping engagement with the first prosthesis.
Abstract:
An automatic wireless medical device release system may reduce the overall diameter of the medical device delivery system. The medical device delivery system may include a medical device with a looped portion at a distal end of the medical device. A capture wire may be located on a delivery tool that is distal to the medical device. The looped portion of the medical device may be attached to a bend in the capture wire. The bend in the capture wire may be maintained by a sheath covering the delivery tool. Removal of the sheath may automatically remove the bend in the capture wire, which may release the looped portion of the medical device from the capture wire.
Abstract:
The present embodiments provide a prosthesis comprising first and second segments, and an axially extendable segment coupled to the first and second segments. A valve is coupled to at least one of the axially extendable segment or the second segment. The axially extendable segment comprises a first state in which the valve at least partially overlaps with the first segment, and the axially extendable segment comprises a second state in which the valve lacks an overlap with the first segment.
Abstract:
This invention relates generally to medical devices, and more particularly, to endovascular grafts and methods for treating branched vessels in diverse patient populations including those with shorter than average common iliac arteries. A bifurcated stent graft as described herein comprises adjacent facing fenestrations formed in the graft legs in order to permit proper placement of an “up-and-over sheath” and a side branch which may be proximally located in order to properly align the side branch with the opening of the branch vessel such as the internal iliac artery while keeping the graft bifurcation seated near the aortic bifurcation.
Abstract:
An endoluminal prosthesis comprises a graft having a tubular body comprising proximal and distal ends, inner and outer surfaces, and partially and fully deployed states. A temporary channel is disposed external to the outer surface of the graft in the partially deployed state. The temporary channel begins at one of the proximal and distal ends of the graft, and extends along only a portion of a longitudinal length of the graft. The temporary channel is removed when the graft is in a fully deployed state.
Abstract:
The present embodiments provide stents and stent-grafts for use in medical procedures. In one embodiment, a stent comprises a series of proximal apices, a series of distal apices, and at least one imaging element. A first suture bore is disposed in a surface of the stent at a location distal to the imaging element, and is adapted to receive a suture for coupling a portion of the stent to a graft material. A distal region of the stent, including the series of distal apices and the first suture bore, overlaps with the graft material, while a proximal region of the stent, including the series of proximal apices and at least one barb, is disposed proximally beyond the graft material. In an alternative embodiment, a stent-graft comprises a graft, a first stent and a second stent, in which a series of proximal apices of the first stent are each disposed distal to the proximal end of the graft, and a series of proximal apices of the second stent are each disposed proximally beyond the proximal end of the graft.
Abstract:
An endoscopic access port and sheath assembly or laparoscopic port (10) comprises a sheath (12) and a haemostatic valve. The sheath has an elongate tubular body and a sheath lumen through it. The haemostatic valve comprising a housing (14), the housing comprises a tubular body with an internal lumen (18) and a first end and a second end. The first end is connected to the sheath and the sheath lumen and the internal lumen are in fluid communication. The second end of the housing has an access port. There is a substantially cylindrical valve assembly (27) within the housing at the second end of the housing. The substantially cylindrical valve assembly is formed from a plurality of valve segments (28). Each valve segment has an elongate body being in cross section a sector of a circle. Each valve segment is formed from a resilient material. The plurality of valve segments when assembled form the substantially cylindrical valve assembly and define between each other a plurality resilient interface regions (29) to receive and grip a medical device between them in use.