Abstract:
According to embodiments disclosed herein, an apparatus may hold and retain glass articles during processing. The apparatus may define a plurality of receiving volumes for holding glass articles. The apparatus may include a bottom support floor, a glassware-securing member positioned above the bottom support floor, and a cover plate positioned above the glassware-securing member. The bottom support floor may include a plurality of fluid passages, the glassware-securing member may include a plurality of glassware-retaining openings, and the cover plate may include a plurality of fluid passages. Methods for the use of such apparatuses are also disclosed herein.
Abstract:
The glass containers described herein are resistant to delamination, have improved strength, and increased damage resistance. In one embodiment, a glass container may include a body having an inner surface, an outer surface and a wall thickness extending between the outer surface and the inner surface. At least the inner surface of the body may have a delamination factor less than or equal to 10. The body may also have a compressively stressed layer extending from the outer surface of the body into the wall thickness. The compressively stressed layer may have a surface compressive stress greater than or equal to 150 MPa. A lubricous coating may be positioned around at least a portion of the outer surface of the body, such that the outer surface of the body with the lubricous coating has a coefficient of friction less than or equal to 0.7.
Abstract:
Low-friction coatings and glass articles with low-friction coatings are disclosed. According to one embodiment, a coated glass article may include a glass body comprising a first surface and a low-friction coating positioned on at least a portion of the first surface of the glass body. The low-friction coating may include a polymer chemical composition. The coated glass article may be thermally stable at a temperature of at least about 260° C. for 30 minutes. A light transmission through the coated glass article may be greater than or equal to about 55% of a light transmission through an uncoated glass article for wavelengths from about 400 nm to about 700 nm. The low-friction coating may have a mass loss of less than about 5% of its mass when heated from a temperature of 150° C. to 350° C. at a ramp rate of about 10° C./minute.
Abstract:
A glass container including a body having a delamination factor less than or equal to 10 and at least one marking is described. The body has an inner surface, an outer surface, and a wall thickness extending between the outer surface and the inner surface. The marking is located within the wall thickness. In particular, the marking is a portion of the body having a refractive index that differs from a refractive index of an unmarked portion of the body. Methods of forming the marking within the body are also described.
Abstract:
Coated pharmaceutical packages are disclosed. In embodiments, a coated pharmaceutical package may include a glass body comprising a first surface. A low-friction coating may be positioned on at least a portion of the first surface of the glass body. The low-friction coating may include a polymer chemical composition. The coated pharmaceutical package may be thermally stable at a temperature of at least about 260° C. for 30 minutes. The low-friction coating may have a mass loss of less than about 5% of its mass when heated from a temperature of 150° C. to 350° C. at a ramp rate of about 10° C./minute.
Abstract:
According to embodiments disclosed herein, an apparatus may hold and retain glass articles during processing. The apparatus may define a plurality of receiving volumes for holding glass articles. The apparatus may include a bottom support floor, a glassware-securing member positioned above the bottom support floor, and a cover plate positioned above the glassware-securing member. The bottom support floor may include a plurality of fluid passages, the glassware-securing member may include a plurality of glassware-retaining openings, and the cover plate may include a plurality of fluid passages.
Abstract:
Delamination resistant glass containers with heat-tolerant coatings are disclosed. In one embodiment, a glass container may include a glass body having an interior surface, an exterior surface and a wall thickness extending from the exterior surface to the interior surface. At least the interior surface of the glass body is delamination resistant. The glass container may further include a heat-tolerant coating positioned on at least a portion of the exterior surface of the glass body. The heat-tolerant coating may be thermally stable at temperatures greater than or equal to 260° C. for 30 minutes.
Abstract:
Coated pharmaceutical packages are disclosed. In embodiments, a coated pharmaceutical package may include a glass body comprising a first surface. A low-friction coating may be positioned on at least a portion of the first surface of the glass body. The low-friction coating may include a polymer chemical composition. The coated pharmaceutical package may be thermally stable at a temperature of at least about 260° C. for 30 minutes. The low-friction coating may have a mass loss of less than about 5% of its mass when heated from a temperature of 150° C. to 350° C. at a ramp rate of about 10° C./minute.
Abstract:
Delamination resistant glass containers with heat-tolerant coatings are disclosed. In one embodiment, a glass container may include a glass body having an interior surface, an exterior surface and a wall thickness extending from the exterior surface to the interior surface. At least the interior surface of the glass body is delamination resistant. The glass container may further include a heat-tolerant coating positioned on at least a portion of the exterior surface of the glass body. The heat-tolerant coating may be thermally stable at temperatures greater than or equal to 260° C. for 30 minutes.
Abstract:
Low-friction coatings and glass articles with low-friction coatings are disclosed. According to one embodiment, a coated glass article may include a glass body comprising a first surface and a low-friction coating positioned on at least a portion of the first surface of the glass body. The low-friction coating may include a polymer chemical composition. The coated glass article may be thermally stable at a temperature of at least about 260° C. for 30 minutes. A light transmission through the coated glass article may be greater than or equal to about 55% of a light transmission through an uncoated glass article for wavelengths from about 400 nm to about 700 nm. The low-friction coating may have a mass loss of less than about 5% of its mass when heated from a temperature of 150° C. to 350° C. at a ramp rate of about 10° C./minute.