摘要:
An air particle precipitator and a method of air filtration comprise a housing unit; a first conductor in the housing unit; a second conductor in the housing unit; and a carbon nanotube grown on the second conductor. Preferably, the first conductor is positioned opposite to the second conductor. The air particle precipitator further comprises an electric field source adapted to apply an electric field to the housing unit. Moreover, the carbon nanotube is adapted to ionize gas in the housing unit, wherein the ionized gas charges gas particulates located in the housing unit, and wherein the first conductor is adapted to trap the charged gas particulates. The air particle precipitator may further comprise a metal layer over the carbon nanotube.
摘要:
A storage cell, integrated circuit (IC) chip with one or more storage cells that may be in an array of the storage cells and a method of forming the storage cell and IC. Each storage cell includes a stylus, the tip of which is phase change material. The phase change tip may be sandwiched between an electrode and conductive material, e.g., titanium nitride (TiN), tantalum nitride (TaN) or n-type semiconductor. The phase change layer may be a chalcogenide and in particular a germanium (Ge), antimony (Sb), tellurium (Te) (GST) layer.
摘要:
Methods of forming a gas dielectric and a related structure are disclosed. In one embodiment, the method includes providing a wiring level including at least one conductive portion within a sacrificial dielectric; forming a nanofiber layer over the wiring level; vaporizing the sacrificial dielectric by heating; evacuating the vaporized sacrificial layer; and sealing pores in the nanofiber layer.
摘要:
An air particle precipitator and a method of air filtration include a housing unit; a first conductor in the housing unit; a second conductor in the housing unit; and a carbon nanotube grown on the second conductor. Preferably, the first conductor is positioned opposite to the second conductor. The air particle precipitator further includes an electric field source adapted to apply an electric field to the housing unit. Moreover, the carbon nanotube is adapted to ionize gas in the housing unit, wherein the ionized gas charges gas particulates located in the housing unit, and wherein the first conductor is adapted to trap the charged gas particulates. The air particle precipitator may further include a metal layer over the carbon nanotube.
摘要:
A structure and a method for forming the same. The structure includes (a) a semiconductor layer including a channel region disposed between first and second S/D regions; (b) a gate dielectric region on the channel region; (c) a gate region on the gate dielectric region and electrically insulated from the channel region by the gate dielectric region; (d) a protection umbrella region on the gate region, wherein the protection umbrella region comprises a first dielectric material, and wherein the gate region is completely in a shadow of the protection umbrella region; and (e) a filled contact hole (i) directly above and electrically connected to the second S/D region and (ii) aligned with an edge of the protection umbrella region, wherein the contact hole is physically isolated from the gate region by an inter-level dielectric (ILD) layer which comprises a second dielectric material different from the first dielectric material.
摘要:
A silicon-on-insulator (SOI) Read Only Memory (ROM), and a method of making the SOI ROM. ROM cells are located at the intersections of stripes in the surface SOI layer with orthogonally oriented wires on a conductor layer. Contacts from the wires connect to ROM cell diodes in the upper surface of the stripes. ROM cell personalization is the presence or absence of a diode and/or contact.
摘要:
Non-volatile and radiation-hard switching and memory devices using vertical nano-tubes and reversibly held in state by van der Waals' forces and methods of fabricating the devices. Methods of sensing the state of the devices include measuring capacitance, and tunneling and field emission currents.
摘要:
A method and structure for forming a semiconductor structure. A semiconductor substrate is provided. A trench is formed within the semiconductor substrate. A first layer of electrically insulative material is formed within the trench. A first portion and a second portion of the first layer of electrically insulative material is removed. A second layer of electrically insulative material is selectively grown on the first layer comprising the removed first portion and the removed second portion.
摘要:
An SRAM cell. The SRAM cell including: a first gate segment common to a first PFET and a first NFET, a second gate segment common to a second PFET and a second NFET; a first silicide layer contacting a first end of the first gate segment and a drain of the second PFET; a second silicide layer contacting a sidewall contact region of the second gate segment and a drain of the first PFET; a third silicide layer contacting a sidewall contact region of the first gate segment and a drain of the second NFET; a fourth silicide layer contacting a first end of the second gate segment, a drain of the first PFET and a drain of a fourth NFET; and a fifth silicide layer contacting a second end of the first gate segment and a drain of a third NFET.
摘要:
A process for forming a semiconductor device having an oxide beanie structure (an oxide cap overhanging an underlying portion of the device). An oxide layer is first provided covering that portion, with the layer having a top surface and a side surface. The top and side surfaces are then exposed to an oxide deposition bath, thereby causing deposition of oxide on those surfaces. Deposition of oxide on the top surface causes growth of the cap layer in a vertical direction and deposition of oxide on the side surface causes growth of the cap layer in a horizontal direction, thereby forming the beanie structure.