摘要:
A method to allow a device to boot in a secure fashion, even though some of the components within the secure device's firmware may not be present, not correctly authorized, or not correctly operating.
摘要:
A system including a secure LSI 1 establishes a communication path to/from a server 3 (UD1), and receives a common key-encrypted program generated by encryption with a common key and transmitted from the server 3 (UD6 and UD7). The received common key-encrypted program is decrypted to generate a raw program, and the raw program is re-encrypted with an inherent key to newly generate an inherent key-encrypted program, which is stored in an external memory.
摘要:
A semiconductor device includes a semiconductor region, a source region, a drain region, a source extension region a drain extension region, a first gate insulation film, a second gate insulation film, and a gate electrode. The source region, drain region, source extension region and drain extension region are formed in a surface portion of the semiconductor region. The first gate insulation film is formed on the semiconductor region between the source extension region and the drain extension region. The first gate insulation film is formed of a silicon oxide film or a silicon oxynitride film having a nitrogen concentration of 15 atomic % or less. The second gate insulation film is formed on the first gate insulation film and contains nitrogen at a concentration of between 20 atomic % and 57 atomic %. The gate electrode is formed on the second gate insulation film.
摘要:
A semiconductor device includes a semiconductor region, a source region, a drain region, a source extension region a drain extension region, a first gate insulation film, a second gate insulation film, and a gate electrode. The source region, drain region, source extension region and drain extension region are formed in a surface portion of the semiconductor region. The first gate insulation film is formed on the semiconductor region between the source extension region and the drain extension region. The first gate insulation film is formed of a silicon oxide film or a silicon oxynitride film having a nitrogen concentration of 15 atomic % or less. The second gate insulation film is formed on the first gate insulation film and contains nitrogen at a concentration of between 20 atomic % and 57 atomic %. The gate electrode is formed on the second gate insulation film.
摘要:
A coil apparatus having a divided winding conformation and a manufacturing method of the coil apparatus which can prevent a winding from collapsing while achieving a reduction in size of a core and simplification of a structure. A coil apparatus includes a ferrite core and a coil provided around the core. The coil includes at least a first coil portion and a second coil portion, and a boundary end surface of the first coil portion on the second coil portion side is inclined in such a manner that its inner peripheral side is closer to the second coil portion than its outer peripheral side. Further, a boundary end surface of the second coil portion on the first coil portion side is inclined in such a manner that its outer peripheral side is closer to the first coil portion than its inner peripheral side.
摘要:
An development environment of a high security level is provided for a key-installed system. Development of a program for a system having an LSI device which includes a secure memory is performed by providing another LSI device having the same structure and setting the provided LSI device to a development mode which is different from a product operation mode. Alternatively, the provided LSI device is set to an administrator mode to perform development and encryption of a key-generation program. The LSI device is set to a key-generation mode to execute the encrypted key-generation program, thereby generating various keys.
摘要:
A doping method includes implanting first impurity ions into a semiconductor substrate, so as to form a damaged region in the vicinity of a surface of the semiconductor substrate, the first impurity ions not contributing to electric conductivity; implanting second impurity ions into the semiconductor substrate through the damaged region, the second impurity ions having an atomic weight larger than the first impurity ions and contributing to the electric conductivity; and heating the surface of the semiconductor substrate with a light having a pulse width of about 0.1 ms to about 100 ms, so as to activate the second impurity ions.
摘要:
An apparatus for annealing a substrate includes a substrate stage having a substrate mounting portion configured to mount the substrate; a heat source having a plurality of heaters disposed under the substrate mounting portion, the heaters individually preheating a plurality areas defined laterally in the substrate through a bottom surface of the substrate; and a light source facing a top surface of the substrate, configured to irradiate a pulsed light at a pulse width of about 0.1 ms to about 100 ms on the entire top surface of the substrate.
摘要:
A secure processing device having a power saving mode, which is used for built-in apparatuses, calculates a hash value of secure data that needs to be saved when switching to the power saving mode, stores the calculated hash value in a protection storage unit whose data is not lost even in the power saving mode, encrypts the secure data and stores the encrypted data in an external memory when switching to the power saving mode. When switching back to the normal power mode, the secure processing device decrypts the encrypted data, calculates a hash value of the decrypted data and compares the hash value with the hash value stored in the protection storage unit. The decrypted data is restored to the protection storage unit when the hash values are identical, but discarded together with the encrypted data stored in the external memory when the hash values are not identical.
摘要:
A manufacturing method of a CMOS semiconductor device includes using, in an nMOS, spike RTA (first annealing) together with ultra-rapid rising/falling temperature annealing (second annealing) whose temperature increase/decrease rate is higher than that of the spike RTA, and applying the ultra-rapid rising/falling temperature annealing (second annealing) alone in a pMOS, when activating a shallow source/drain extension region.