Abstract:
A multiple input multiple output (MIMO) antenna for a radar system, the antenna for at least one first module having a plurality of antenna elements forming a linear array, wherein the plurality of antenna elements in the linear array are uniformly separated by a first distance; and for at least one second module having a plurality of antenna elements forming a planar array, wherein the plurality of antenna elements in the planar array are uniformly separated by a second distance; and wherein the at least one first module and the at least one second module are selectively configured to function as transmitter modules or receiver modules, and wherein an interleaving between the plurality of antenna elements in the linear array of the at least one first module with the plurality of antenna elements in the planar array of the at least one second module produces a uniform virtual antenna array.
Abstract:
A system and method for navigating a vehicle with respect to an object is disclosed. The system includes a transmitter for transmitting a source signal, a receiver for receiving an echo signal that is a reflection of the source signal from the object, and a processor. A parameter of the object is obtained at a radar system and an avoidance criterion is selected for the object. The processor determines a boundary of the object for the parameter of the object and the selected avoidance criterion and the vehicle is navigated in order to avoid the object based on the determined boundary.
Abstract:
A system and method for resolving a first target from a second target by radar is disclosed. The system includes a transmitter for transmitting a source signal, a receiver for receiving first and second echo signals from reflection of the source signal from at least a first target and a second target, respectively. A processor is used to subtract the first echo signal from the composite signal to obtain a second generation of the second echo signal, subtract the second generation of the second echo signal from the composite signal to obtain a second generation of the first echo signal, and estimate a parameter value for the first target from the second generation of the first echo signal and a parameter value for the second target from the second generation of the second echo signal.
Abstract:
A system and method perform calibration of a radar system on a mobile platform. A position of the platform is obtained along with a relative position of one or more stationary objects from the platform using the position of the platform and a mapping algorithm as ground truth and one or more radar parameters regarding the one or more stationary objects using the radar system, the one or more radar parameters including an angle estimate. The method includes determining a correction matrix based on the one or more parameters and the ground truth, and obtaining corrected received signals from subsequent received signals of the radar system based on the correction matrix.
Abstract:
A system and method generate a signal for transmission by a radar system. A bit modulator outputs a bit of a binary code. A digital frequency controller outputs a range of frequencies. An order of the range of frequencies is based on the bit. A phase-locked loop generates a signal for transmission by the radar system. The signal includes a chirp comprising the range of frequencies in the order output by the digital frequency controller.
Abstract:
The present invention generally relates to processing of electromagnetic signals, and more specifically, for a method and apparatus for managing the computational cost of radar signal processing on a vehicular radar. The system is operative to utilize a Goerzel filter to aid in determining a frequency for a radar echo. In addition the system uses a DFT operation for tracking stationary objects and a FFT operation for tracing moving objects.
Abstract:
A control system and method dynamically adjust radar parameters of a radar system on a platform. The method includes obtaining inputs including platform parameters, wherein the platform parameters includes speed and braking duration, and obtaining a characterization of driving behavior based on the inputs. Modifying the radar parameters is based on the inputs and the characterization, wherein the modifying includes changing a maximum range, and providing alerts to a driver of the platform is based on the radar system.
Abstract:
A method of determining velocity of a target and a fusion system on a moving platform to determine the velocity of the target are described. The method includes obtaining, using a radar system, position and radial velocity of the target relative to the moving platform, obtaining, using a vision system, optical flow vectors based on motion of the target relative to the moving platform, and estimating a dominant motion vector of the target based on the optical flow vectors. The method also includes processing the position, the radial velocity, and the dominant motion vector and determining the velocity of the target in two dimensions.
Abstract:
An automotive radar system includes a radar camera that captures a sequence of frames of radar images of a field of view of the radar. A boundary detector receives the radar data from the radar camera and detects object boundary data in the radar data. An image processor receives the radar data and the object boundary data and performs image analysis including image deblurring and generating response control signals based at least in part on the radar data and the object boundary data. Response equipment implements one or more response actions based on the response control signals. Object boundary detection includes performing pixel-level Doppler analysis to associate pixel velocities to pixels of the radar data and identifying discontinuities in the pixel velocities. Response equipment may include, for example, one or more of a navigation display, collision avoidance warning, automatic cruise control, automatic braking, and automatic steering.
Abstract:
A target detection system and a method of performing radar target detection are described. The system includes a radar system to obtain radar echoes from a target with multiple point reflectors. The system also includes a processor to obtain a cluster of multi-dimensional point spread function from the radar echoes, each multi-dimensional point spread function being associated with a reflection from one of the multiple point reflectors, and also to perform object detection based on three or more dimensions of each of the multi-dimensional point spread functions of the cluster.