Abstract:
A display device includes: an image display unit in an image display region, the image display unit including a plurality of main pixels each including sub-pixels; a light source portion that irradiates the image display region; a signal correction unit that calculates saturation and value of the main pixels based on first color information to be displayed on a predetermined pixel, the first color information being obtained based on an input video signal, and generates second color information by correcting the first color information based on the calculated saturation and value; a signal generation unit that calculates the saturation and the value of the main pixels based on the second color information, and generates a signal for determining light source luminance of the light source based on the calculated saturation and value; and a light source control unit that controls luminance of the light source based on the signal.
Abstract:
A display device includes an image processing unit that performs image processing on image data input from the outside, and performs display output corresponding to the image data on which image processing is performed by the image processing unit. The image processing unit includes a first processing circuit that simply replaces colors of an image to limit the number of colors used for the image to a predetermined number equal to or smaller than 16, a second processing circuit that performs image processing including arithmetic processing for improving luminance of a plurality of pixels constituting the image displayed on the display device corresponding to the image data; and a switching unit that causes the second processing circuit to perform image processing, and causes the first processing circuit to perform image processing when performing the image processing while saving more power than the second processing circuit.
Abstract:
The reliability of a display device with an input device is improved. A plurality of detection electrodes (input position detection electrodes) forming an electrostatic capacity between them and a common electrode of a display device to detect an input position are formed on a different substrate from substrates configuring the display device. Moreover, a polarizing plate and the substrate on which the plurality of detection electrodes are formed are adhesively fixed via, for example, an adhesive layer so that the plurality of detection electrodes are fixed so as to be separated apart from the display device. Thus, a distance between electrodes (the detection electrode and a driving electrode) for detecting an input position can be set separately from a thickness of the display device, and therefore, reduction in detection sensitivity (detection reliability) for the input position due to increase in the electrostatic capacity can be suppressed.
Abstract:
According to an aspect, a display device includes: an image display panel; a signal processing unit; and a signal processing circuit. The signal processing unit calculates an extension coefficient α for an input signal, calculates an output signal of a first sub-pixel, calculates an output signal of a second sub-pixel, calculates an output signal of a third sub-pixel, calculates an output signal of a fourth sub-pixel, and calculates a control signal. The signal processing circuit performs filtering processing on the control signal by a set first time constant to calculate and output a light-source device control signal, when the control signal is smaller than a set threshold value, and performs filtering processing on the control signal by a set second time constant to calculate and output the light-source device control signal, when the control signal is equal to or larger than the threshold value.
Abstract:
According to an aspect, the liquid crystal display device includes: an expansion coefficient determining unit that determines an expansion coefficient of each of partial areas based on a signal level of the first, the second, and the third colors; a luminance level determining unit that determines a luminance level of each partial area based on the signal level; a signal processing unit that uses the expansion coefficient to expand the signal level; and a light source control unit that controls brightness of a light source based on the expansion coefficient and the luminance level. The light source can change the brightness of the partial areas individually. The light source control unit controls the light source such that the brightness of the light source in a partial area having a luminance level equal to or higher than a predetermined threshold is higher than the brightness based on the expansion coefficient.
Abstract:
According to one embodiment, a display device includes a light source, a dimming panel which comprises a dimming area including sub-areas arrayed in a matrix and controls a transmittance of light from the light source in each of the sub-areas, and a display panel which comprises a display area including pixels arrayed in a matrix and displays an image due to incident light transmitted through the dimming panel thereon.
Abstract:
A display device includes: an image display unit that includes an image display region; a plurality of light sources that are arranged corresponding to a plurality of partial regions included in the image display region and irradiate the partial regions with light; a light amount correction processing unit that detects that the partial regions are non-display regions in which no image is displayed, and corrects a light amount of the light sources based on a predetermined threshold when the partial regions adjacent to each other are continuous non-display regions; and a light source control unit that controls the light amount of the light sources.
Abstract:
According to an aspect, a display device includes: an image display panel; and a plurality of signal processing circuits that are responsible for respective regions in the image display panel, that convert an input value of an input HSV color space of an input signal to each of their own responsible regions into an extension value of an extended HSV color space to generate an output signal of the extension value for the image display panel. The signal processing circuits decide an extension coefficient αA for the image display panel in its entirety in a cooperative manner. The signal processing circuit, regarding its own responsible region, calculates an output signal of each of a first sub-pixel, a second sub-pixel, third sub-pixel, and a fourth sub-pixel.
Abstract:
The reliability of a display device with an input device is improved. A plurality of detection electrodes (input position detection electrodes) forming an electrostatic capacity between them and a common electrode of a display device to detect an input position are formed on a different substrate from substrates configuring the display device. Moreover, a polarizing plate and the substrate on which the plurality of detection electrodes are formed are adhesively fixed via, for example, an adhesive layer so that the plurality of detection electrodes are fixed so as to be separated apart from the display device. Thus, a distance between electrodes (the detection electrode and a driving electrode) for detecting an input position can be set separately from a thickness of the display device, and therefore, reduction in detection sensitivity (detection reliability) for the input position due to increase in the electrostatic capacity can be suppressed.
Abstract:
A display device includes: a display panel with pixels arranged in a first direction and a second direction; and a light source. Each pixel includes: a first sub-pixel including a color filter for a first color; and a second sub-pixel arranged adjacent to the first sub-pixel in the first direction and including a color filter for a complementary color between a second color and a third color. The light source includes: a first light emitter configured to emit light in the first color; a second light emitter configured to emit light in the second color; and a third light emitter configured to emit light in the third color. One frame period includes: a first light emission period of causing the first and second light emitters to emit light simultaneously; and a second light emission period of causing the first and third light emitters to emit light simultaneously.