摘要:
A noise-testing method for a thin-film magnetic head with an MR read head element and a heating unit capable of applying a heat and a stress to the MR read head element, includes a step of applying alternately and discontinuously with each other an electrical power having a first level and an electrical power having a second level higher than the first level to the heating unit, and a step of evaluating the thin-film magnetic head by measuring a noise output or noise outputs obtained from the MR read head element when the electrical power or the electrical powers are applied to the heating unit.
摘要:
The invention provides a giant magneto-resistive effect device (CPP-GMR device) having a CPP (current perpendicular to plane) structure comprising a spacer layer, and a fixed magnetized layer and a free layer stacked one upon another with said spacer layer interleaved between them, with a sense current applied in a stacking direction, wherein the spacer layer comprises a first and a second nonmagnetic metal layer, each formed of a nonmagnetic metal material, and a semiconductor oxide layer interleaved between the first and the second nonmagnetic metal layer, wherein the semiconductor oxide layer that forms a part of the spacer layer is made of indium oxide (In2O3), or the semiconductor oxide layer contains indium oxide (In2O3) as its main component, and an oxide containing a tetravalent cation of SnO2 is contained in the indium oxide that is the main component. The semiconductor oxide layer that forms a part of the spacer layer can thus be made thick while the device has a low area resistivity as desired, ensuring much more favorable advantages: ever higher MR performance, prevention of device area resistivity variations, and much improved reliability of film characteristics.
摘要翻译:本发明提供一种具有CPP(垂直于平面的电流)结构的巨磁阻效应器件(CPP-GMR器件),其包括间隔层,以及固定磁化层和自由层,所述固定磁化层和自由层彼此层叠, 它们具有沿层叠方向施加的感测电流,其中间隔层包括由非磁性金属材料形成的第一和第二非磁性金属层和交错在第一和第二非磁性金属层之间的半导体氧化物层, 其中形成间隔层的一部分的半导体氧化物层由氧化铟(In 2 O 3 O 3)制成,或者半导体氧化物层含有氧化铟(In < 作为其主要成分的氧化物,包含SnO 2的四价阳离子的氧化物,作为主要成分的氧化铟中含有 。 因此,形成间隔层的一部分的半导体氧化物层可以制成厚度,同时器件根据需要具有低的面积电阻率,确保更有利的优点:越来越高的MR性能,防止器件面积电阻率变化和大大提高的可靠性 的电影特色。
摘要:
A magnetic head slider includes at least one thin-film magnetic head formed on a trailing surface of the magnetic head slider, and an ABS to be faced a magnetic disk in operation. At least a part of the ABS is made of a giant magnetostrictive material.
摘要:
The invention provides a giant magneto-resistive effect device (CPP-GMR device) having the CPP (current perpendicular to plane) structure comprising a spacer layer, and a first ferromagnetic layer and a second ferromagnetic layer stacked one upon another with the spacer layer interposed between them, with a sense current applied in a stacking direction, wherein the spacer layer comprises a first nonmagnetic metal layer and a second nonmagnetic metal layer, each made of a nonmagnetic metal material, and a semiconductor oxide layer interposed between the first nonmagnetic metal layer and the second nonmagnetic metal layer, the semiconductor oxide layer that forms a part of said spacer layer contains zinc oxide as its main component wherein the main component zinc oxide contains an additive metal, and the additive metal is less likely to be oxidized than zinc. It is thus possible to keep the area resistivity of the device low as desired, and make the semiconductor oxide layer forming a part of the spacer layer thick while holding back any noise increase. This makes sure the excellent advantages that any variation of the area resistivity of the device is inhibited while the S/N is prevented from getting worse, and the reliability of film characteristics is much more improved.
摘要:
The thickness of the semiconductor layer forming a part of the spacer layer is set in the thickness range for a transitional area showing conduction performance halfway between ohmic conduction and semi-conductive conduction in relation to the junction of the semiconductor layer with the first nonmagnetic metal layer and the second nonmagnetic metal layer. This permits the specific resistance of the spacer layer to be greater than that of an ohomic conduction area, so that spin scattering and diffusion depending on a magnetized state increases, resulting in an increase in the MR ratio. The CPP-GMR device can also have a suitable area resistivity (AR) value.If the device can have a suitable area resistivity and a high MR ratio, it is then possible to obtain more stable output power in low current operation than ever before, and extend the service life of the device as well. The device is also lower in resistance than a TMR device, so that significant noise reductions are achievable.
摘要:
A method for manufacturing a magnetic field detecting element has the steps of: forming stacked layers by sequentially depositing a pinned layer, a spacer layer, a spacer adjoining layer which is adjacent to the spacer layer, a metal layer, and a Heusler alloy layer in this order, such that the layers adjoin each other; and heat treating the stacked layers in order to form the free layer out of the spacer adjoining layer, the metal layer, and the Heusler alloy layer. The spacer adjoining layer is mainly formed of cobalt and iron, and has a body centered cubic structure, and the metal layer is formed of an element selected from the group consisting of silver, gold, copper, palladium, or platinum, or is formed of an alloy thereof.
摘要:
A magneto-resistive element includes a lower magnetic shield film and a magneto-resistive film disposed above the lower magnetic shield film. The lower magnetic shield film includes a lower shield layer and an upper shield layer. The upper shield layer is amorphous or microcrystalline, made of a NiFe or CoFe composition containing B or P, and deposited on the lower shield layer. The lower shield layer is a magnetic conductive layer which is amorphous or microcrystalline with a crystal grain size equal to or less than 20 nm.
摘要:
A magnetic thin film has a layer which is formed of an alloy having a ordered crystal structure whose composition formula is represented by XYZ or X2YZ (where X is one or more than one of the elements selected from the group consisting of Co, Ir, Rh, Pt, and Cu, Y is one or more than one of the elements selected from the group consisting of V, Cr, Mn, and Fe, and Z is one or more than one of the elements selected the group consisting of Al, Si, Ge, As, Sb, Bi, In, Ti, and Pb). The alloy contains at least one additive element which is not included in the composition formula of the alloy and which has a Debye temperature that is equal to or less than 300K.
摘要:
A magnetic head includes a main pole and a write shield. The write shield includes a bottom shield, a first side shield and a second side shield. The first side shield has first and second sidewalls. The second side shield has third and fourth sidewalls. Each of the second and fourth sidewalls has a top edge farthest from a top surface of a substrate. The top edge of each of the second and fourth sidewalls is parallel to a medium facing surface. A portion of a top surface of the bottom shield, the first sidewall, and the third sidewall define a receiving section to receive a portion of the main pole. The receiving section has a bottom including a first inclined portion, a second inclined portion, and a third inclined portion.
摘要:
A plasmon-generator of the invention is configured to include a first configuration member including a near-field light generating end surface; and a second configuration member joined and integrated with the first configuration member and not including the near-field light generating end surface. The first configuration member is configured to contain Au as a primary component and to contain any one or more elements selected from a group of Co, Fe, Sb, Nb, Zr, Ti, Hf, and Ta, and is configured so that a content percentage X1 of the contained element is within a range between 0.2 at % or more and 2.0 at % or less. Thereby, thermostability, optical characteristic, and the process stability are satisfied. Also, heat dissipation and heat generation suppression effect are extremely superior.