Abstract:
A method includes evaluating an optical signal spectrum for estimated filtering parameters of an optical spectral filtering device for shaping optical signal spectrum, determining a feedback for fine tuning the optical spectral filtering device for nonlinearity tolerance enhancement in the optical transmission system, responsive to received optical signal quality in the optical signal spectrum; and using the feedback to adjust said optical spectral filtering device for predetermined shaping and predetermined fiber nonlinearity tolerance in the optical transmission system.
Abstract:
A method for optimal combined 2R/3R regenerators placement for optical transmission includes determining an optimal placement of multiple 2R and 3R regenerators that minimizes bit error rate BER at a destination node, determining an optimal number of the 2R and 3R regenerators that minimizes a total cost while satisfying the BER at the destination node, and determining an optimal placement of the 2R and 3R regenerators along a route in the optical transmission.
Abstract:
A method sets certain downstream traffic scheduling rules at an optical line terminal OLT and certain sleep control rules at optical network units ONUs. Both downstream traffic scheduling rules and sleep control rules are common information owned by both the OLT and ONUs. The method sets the traffic scheduling rules that each ONU is allocated with some time slots every cycle if the ONU has downstream traffic. Rather than using a control message to notify ONUs with their queue status, the method lets ONUs infer whether its downstream queue is empty or not based on downstream traffic scheduling and lets the OLT infer the status of an ONU based on sleep control rules.
Abstract:
Systems and methods for reducing work conflicts is provided. The method includes receiving a vibrational signal from a utility pole; identifying a location and type of field work on the utility pole from one or more features of the vibrational signal utilizing a trained neural network; and communicating the location and type of field work to a third party.
Abstract:
Aspects of the present disclosure describe distributed fiber optic sensing (DFOS) systems, methods, and structures that advantageously extend DFOS techniques to anomaly detection using optical magnetism switches (OMC) that are integrated into the DFOS system.
Abstract:
Distributed fiber optic sensing systems (DFOS) methods, and structures that employ DVS/DAS point sensors and a two-stage processing methodology/structure that advantageously enable point sensors to send sensor data at any time—thereby providing significant processing advantages over the prior art.
Abstract:
Systems and methods for performing the dynamic anomaly localization of utility pole aerial/suspended/supported wires/cables by distributed fiber optic sensing. In sharp contrast to the prior art, our inventive systems and methods according to aspects of the present disclosure advantageously identify a “location region” on a utility pole supporting an affected wire/cable, thereby permitting the identification and reporting of service personnel that are uniquely responsible for responding to such anomalous condition(s).
Abstract:
A method of utility pole integrity assessment by distributed fiber optic sensing/distributed acoustic sensing (DFOS/DAS) employing existing telecommunications fiber optic cable as a sensor. The fiber optic cable is suspended aerially from a plurality of utility poles and a machine learning model is developed during training by mechanically exciting the utility poles. Once developed, and in sharp contrast to the prior art, the machine learning model—in conjunction with DFOS/DAS operation—determines an integrity assessment for a plurality of the utility poles aerially suspending the fiber optic cable from a mechanical impact of a single pole.
Abstract:
Aspects of the present disclosure describe DFOS/DAS systems, methods, and structures that employ active microphones to enhance DAS operational capabilities by using an active circuit to amplify acoustic signals including voice(s). The circuit includes a microphone to collect acoustic signal(s) resulting from voice signals in the environment, and a speaker or a vibration device driven by an amplifier. The circuit can be clipped onto the fiber, with direct contact through the speaker or vibration device. A microcontroller may advantageously be employed to control the circuit for reduced power consumption, by detecting activities locally and only enabling the speaker when needed. The microcontroller may also send other information such as battery status to the DFOS interrogator through vibration codes.
Abstract:
Aspects of the present disclosure describe distributed fiber optic sensing (DFOS) systems, methods, and structures that advantageously enable and/or facilitate the continuous monitoring and identification of damaged utility poles by employing a DFOS distributed acoustic sensing (DAS) methodology in conjunction with a finite element analysis and operational modal analysis. Of particular advantage and in further contrast to the prior art, systems, methods, and structures according to aspects of the present disclosure utilize existing optical fiber supported/suspended by the utility poles as a sensing medium for the DFOS/DAS operation.