Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may identify a number of beam directions that satisfy a transmission power condition. The UE may select a beam direction for a random access signal by choosing one of the beam directions that satisfies additional criteria, such as transmitting a random access message at the next opportunity. The transmission power may be selected based on a target receive power and a path loss for the selected beam. In some cases, if the sum of the path loss for a beam direction and the target receive power exceeds a maximum transmission power by more than a predetermined amount, the random access signal will not be transmitted using that beam. In some cases, if a response to the random access is not received, a different beam direction may be selected, the transmission power may be increased, or both.
Abstract:
Methods, systems, and devices for wireless communication are described. A base station may transmit a phase noise correction reference signal (PC-RS) and a channel state information reference signal (CSI-RS) during a symbol period of a subframe. A user equipment (UE) may identify a first channel information using the PC-RS and the CSI-RS. The UE may transmit a channel information message to the base station that includes the first channel information. The first channel information may include a phase noise corrected channel measurement. The UE may the CSI-RS during the symbol period. Channel and phase noise estimates may be generated using a joint estimation based on the CSI-RS. The CSI-RS may be repeated periodically. In some cases, the UE may additionally or alternatively receive pilot tones that may include PC-RSs. The joint estimation may be further based on the pilot tones.
Abstract:
Methods, systems, and devices for wireless communication are described. The method may include transmitting a first synchronization signal in a set of beam directions during a first symbol period of a synchronization subframe and transmitting a second synchronization signal in another set of beam directions during a second symbol period of the synchronization subframe. The second set of beam directions may be spatially interleaved with the first set of beam directions. Additionally, the method may include monitoring a first and second set of beam directions during a first and second symbol period of a random access subframe, respectively. Additionally, the method may include receiving, from a base station, first and second synchronization signals in a synchronization subframe, decoding the first synchronization signal, and transmitting an access request based at least in part on the decoded first synchronization signal.
Abstract:
A wireless device configured for discontinuous reception (DRX) may and operating in a system that uses directional beamforming may identify a random access time period after awaking from a DRX sleep mode. The device may then transmit a scheduling request during the random access time period. In some cases, the device may transmit the scheduling request using frequency resources also associated with random access transmissions. In other cases, the device may utilize resources that are not associated with random access. The determination of which frequency resources are used may depend on the length of the DRX. That is, if a device has been in a sleep mode for a long time, it may use random access frequency resources that are associated with a more robust transmission configuration.
Abstract:
Various aspects of the disclosure relate to communicating random access information and uplink control information. In some aspects, a user equipment (UE) or other suitable apparatus transmits physical uplink control channel (PUCCH) information concurrently with random access channel (RACH) information transmitted by another UE or other apparatus. For example, the RACH access information and the PUCCH information may be frequency division multiplexed orthogonal tones. The disclosure relates in some aspects to using downlink-uplink (DL-UL) channel reciprocity to determine symbol and/or tone locations. For example, a base station or other suitable apparatus may initially sweep across different directions in different time slots to transmit directional primary synchronization signals (DPSSs). A UE or other suitable apparatus can then find an appropriate RACH symbol from its best DPSS beam index and transmit PUCCH information in those symbols.
Abstract:
Methods, systems, devices, and apparatuses are described for phase noise estimation. A transmitting device identifies a phase noise metric associated with a receiving device. The phase noise metric provides an indication of the expected phase noise for the receiving device. The transmitting device selects a plurality of pilot tones adjacent to each other and a plurality of null tones for a transmission to the receiving device based on the phase noise metric. The plurality of null tones may be adjacent to and on both sides of the pilot tones in the frequency domain. The transmitting device identifies its own phase noise metric and select the pilot tones adjacent to each other and plurality of null tones in further consideration of its own phase noise metric. The receiving device may use the pilot tones and plurality of adjacent null tones to determine a phase noise estimation for the transmission.
Abstract:
Described herein are methods, systems, and apparatus for jointly estimating channel and phase noise in a control symbol. In one example, a method for wireless communication is described that includes inserting a control tone at a first periodicity in a first subcarrier of a control symbol and inserting a pilot tone at a second periodicity in a second subcarrier of the control symbol, the pilot tone being offset from the control tone in the control symbol. The method also includes transmitting the control symbol. In another example, a method for wireless communication is described that includes receiving a control symbol comprising a control tone at a first periodicity, and a pilot tone at a second periodicity, the pilot tone being offset from the control tone in the control symbol. The method also includes performing a phase noise estimation and a channel estimation from the pilot tone.
Abstract:
Methods, systems, and devices for wireless communications are described that provide for hop-count indication in an integrated access and backhaul (IAB) network. An IAB-node may adopt and indicate multiple values for hop-count. The hop-count may be conveyed by a number of different reference signals and channels. A resource pattern and/or a slot pattern may also be associated with the hop-count to simply signaling. By associating the patterns with the hop-count, an IAB-node may be able to infer the resource pattern used by another IAB-node.
Abstract:
Methods, systems, and devices for wireless communication are described. A network device, such as a base station, may transmit a request message to a user equipment (UE). The request message may include a request for the UE to transmit a set of sounding reference signals (SRSs). The set of SRSs may include two (or more) beamformed signals. The network device may receive the set of SRSs according to the request message. The network device may identify, based on a co-phasing parameter associated with the two (or more) beamformed signals, an antenna port precoder configuration to use for communicating with the UE.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a wireless node may determine a first communication configuration for another wireless node. The wireless node may determine a second communication configuration, for the other wireless node, that is different from the first communication configuration, wherein the first communication configuration is a first timing reference and the second communication configuration is a second timing reference that is different from the first timing reference. The wireless node may communicate, with the other wireless node on a downlink, on an uplink, or on a sidelink, using the first communication configuration and the second communication configuration. Numerous other aspects are provided.