摘要:
The subject matter disclosed herein relates to position location in a wireless communication system, and may more particularly relate to position location for a mobile station.
摘要:
A method and system for providing asymmetric modes of operation in multi-carrier wireless communication systems. A method may assign a long code mask (LCM) to an information channel associated with a plurality of forward link carriers to transmit data from an access network to an access terminal; and multiplex the information channel on a reverse link carrier. The information channel may include one of data source channel (DSC), data rate control (DRC) and acknowledgment (ACK) information, and the multiplexing may be code division multiplexing (CDM). The AN may instruct the AT on whether to multiplex the DSC information based on feedback from the AT. The method may further offset the ACK information on the reverse link to reduce the reverse link peak to average, CDM the information channel on an I-branch and on a Q-branch, and transmit the code division multiplexed information channel on the reverse link carrier.
摘要:
Systems, methodologies, and devices are described that facilitate transferring a subset of compression context from a source base station to a target base station during an inter-base station handover of a mobile device to facilitate establishment of compression context between the mobile device and target base station. The source base station can transfer a subset of compression context comprising static and semi-static context to the target base station during inter-base station handover to at least partially establish compression context between the mobile device and target base station prior to or during handover. The source base station can transmit, to the mobile device, indicator information related to compression context transferred. The target base station can at least partially establish compression context based on received subset of compression context to facilitate efficient communication with the mobile device and can establish any remaining portion of compression context with the mobile device after handover.
摘要:
An inter-system handover system for a wireless communication system supports hand-down and hand-up of user equipment (UE) to different radio access technologies, including synchronous and asynchronous systems. Latency and handover connection failures are reduced by an access node (nodeB) broadcasting information about neighboring systems (targets) when the UE reception (RX) capability is both inside or outside the reception range of the target. A single RX chain is sufficient, although transitioning between a wireless wide area network (WWAN) to a wireless local area network may (WLAN) may advantageously benefit from simultaneous operation on two Rx chains. Optimized list of neighboring RAT systems (targets) are broadcast from the network, including measurement parameters and reporting instructions. Thereby, UE-driven reporting minimizes latencies. UE reports other-system searches to network only if needed for a handover. In addition, handover requests can be bundled with other-system measurement information, if necessary, for additional efficiencies.
摘要:
Techniques for the reuse of airlink resources in a cellular network are disclosed. A base station controller may gather information about load levels at adjacent sectors of the cellular network. The base station controller may generate and distribute a reuse reference to base stations serving mobile devices in the adjacent sectors. Alternatively, the base station controller may provide the load level information to base stations serving the adjacent sectors and the base stations may determine a sector reuse pattern. The reuse reference or reuse pattern may be adapted to sector load conditions and may designate any combination of carriers, time slots, and power levels for data transmission in a sector. The base stations may schedule data transmission to mobile devices in their respective sectors according to the reuse reference or reuse pattern. The base stations may modify their resource usage in response to changes in sector load.
摘要:
In a wireless communication system, an apparatus and a method are provided for controlling reverse link interference among access terminals that are power controlled by a sector of a base station. In an embodiment, the maximum effective noise power spectral density is used as a parameter for controlling the level of reverse link loading, by setting a reverse activity bit (RAB) to signal the access terminals to reduce their data rates in order to minimize interference between the access terminals if the maximum effective noise power spectral density is above a predetermined threshold.
摘要:
Methods and apparatus for estimating a transmission power required for data transmission in a communication system are disclosed. A terminal determines a quality metric of a communication link, over which data are to be transmitted, and modifies the determined quality metric by a quality metric margin. The terminal then estimates the maximum rate of data in accordance with the modified quality metric. Alternatively, the terminal estimates transmission power required for data transmission with a data rate in accordance with the modified quality metric. The quality metric margin may be a pre-determined or dynamically adjusted. The terminal dynamically adjusts the quality metric margin in accordance with a result of comparison of a transmit power corresponding to the estimated maximum rate of data with an actual transmit power used to transmit the data.
摘要:
A system has multiple antennas, a Time Division Multiplexing (TDM) module creating TDM slots, and demultiplexing circuitry inserting within the TDM slots Orthogonal Frequency Division Multiplexing (OFDM) symbols and associating the TDM slots with data sub-streams. The system also includes precoding circuitry associating the data sub-streams with multiple tones. Each of the respective tones corresponds to a respective one of the antennas. The antennas transmit the data sub-streams using the multiple tones.
摘要:
Techniques to increase capacity in a wireless communications system. In an aspect, systematic non-transmission, or “blanking,” of minimal-rate frames transmitted in a communications system is provided. In an exemplary embodiment, eighth rate frames in a cdma2000 voice communications system are systematically substituted with null-rate frames carrying zero traffic bits. Provisions are nevertheless made for the transmission of certain designated as “critical” by, e.g., a vocoder. The receiver detects the presence of null rate or non-null rate transmissions and processes the received frames accordingly, including updating an outer loop power control only in response to non-null rate frames. Further techniques for changing the pilot transmission gating pattern to assist the receiver in detecting null rate frames are provided. In another aspect, early termination of a signal transmission over a wireless communications link is provided. In an exemplary embodiment, a base station (BS) transmits power control groups (PCG's) for a frame over a forward link (FL) to a mobile station (MS) until accurate reception of the frame is acknowledged by the MS over a reverse link (RL), possibly before all PCG's of the frame are received over the FL. Possible ACK signaling methods are defined for channels associated with a cdma2000 wireless communications system. In another exemplary embodiment, techniques for reverse link early termination are also provided.
摘要:
System(s) and method(s) are provided for handover of a mobile terminal in a wireless communication system. Handoff resolution relies on both a downlink channel quality indication between a serving base station and the mobile terminal,, and uplink channel quality indications amongst the terminal and a measurement set of target base stations. To generate UL channel quality indicators, the mobile station conveys a narrowband or broadband, sounding reference signal, and serving and target base stations measure UL and DL performance metrics (e.g., RSRP, RSSI, or RSOT). In backward handover, UL channel state information from target cells is received at the serving base station through backhaul communication, and handoff is resolved based on both UL and DL quality reports. In forward handover, the set of UL quality reports are conveyed to the mobile station to determine a target cell for handoff.