Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services.The present application provides a method for light connection control for a User Equipment (UE), comprising the following steps of: acquiring, by a first radio access network node, light connection information for a UE; storing, by the first radio access network node, the acquired light connection Information; and, performing, by the first radio access network node, light connection control of the UE based on the acquired light connection information for the UE. By adopting the technical scheme disclosed in the present application, the signaling overhead can be saved, and the delay of the UE access network can be reduced.
Abstract:
A method for allocating an aggregate maximum bit rate (AMBR) of a user equipment (UE) includes obtaining, by a master base station (MeNB), the AMBR of the UE (UE-AMBR), and obtaining, by the MeNB, information for allocating an AMBR of a secondary base station (SeNB), and allocating, the AMBR of the SeNB according to the information, wherein a sum of the AMBRs of the MeNB and the SeNB is not greater than the UE-AMBR. A method for coordinating aggregate bit rates of non-GBR services between base stations includes sending, by an SeNB, information for allocating an aggregate maximum bit rate (AMBR) of the SeNB to an MeNB, and receiving, by the SeNB, the AMBR allocated by the MeNB.
Abstract:
The present application discloses a method and eNB equipment for supporting seamless handover. The method comprises the following steps of: receiving, by a target eNB, random access information or an RRC connection reconfiguration completion message from a UE; transmitting, by the target eNB, a data transmission stopping indication message to a source eNB; and, stopping, by the source eNB, transmitting downlink data to the UE, and/or stopping, by the source eNB, receiving uplink data from the UE. The present invention further provides several other methods and eNB equipments for supporting seamless handover. By the methods for supporting seamless handover provided by the present invention, the delay of data transmission and the unnecessary data transmission or unnecessary data monitoring of a source eNB can be avoided, the waste of resources and the power consumption can be reduced, and the missing and duplication transmission of data can be avoided.
Abstract:
The present application discloses a self-optimizing method for a UE group, which includes: a. a base station of a cell in the system adjusts mobility parameters of a specified UE group from the cell to another cell, and notifies the base station that the another cell belongs to of a relative value of mobility parameter change of the specified UE group in the cell; or, the base station of the cell requests base station of the another cell to adjust the mobility parameters of the specified UE group to the cell, and carry the relative value of mobility parameter change; b. the base station of the another cell determines which manner to take to adjust the mobility parameters of the specified UE group according to the relative value of the mobility parameter change received.
Abstract:
The present disclosure provides a method for supporting UE access control. A base station is informed by a ProSe Function via a MME or informed by the MIME of information indicating whether a UE is authorized for a D2D service. The base station performs an access control to the UE according to the information indicating whether the UE is authorized for the D2D service. The present disclosure further provides a method in which a source base station informs a target base station of the information indicating whether the UE is authorized for a D2D service. The target base station performs an access control according to the information.
Abstract:
A method for transmitting a handover report and for transmitting a radio link failure (RLF) report are provided. The method includes obtaining, by a target base station, at least one of location information of a source cell or location information of a user equipment (UE) history cell during a handover procedure, and transmitting, by the target base station, the handover report to at least one of a source base station or to a base station where the UE history cell is located, according to the obtained at least one of location information of the source cell or the location information of the UE history cell, wherein the handover report including at least one of an unnecessary handover report, a too early handover report, or a handover to wrong cell report.
Abstract:
The present application discloses a method for a master eNB (MeNB) handover or a secondary eNB (SeNB) handover in a small cell system, comprising: sending by a source MeNB information of a source secondary cell (Scell) to a target MeNB; sending by the target MeNB a message to the source MeNB, the message notifying the source MeNB to suspend data transmission on a bearer of the SeNB. Until a message of data transmission resuming is received, the data transmission/reception is started to continue. The method for a MeNB handover or a SeNB handover provided in the present application may reduce the reconfiguration of the bearer for the UE, avoid releasing the bearer by error, and improve the system throughput and the data rate of transmission.
Abstract:
A method and apparatus for supporting Radio Link Failure (RLF) reason detection or handover failure reason detection are provided. The method includes detecting the Mobility Robustness Optimization (MRO) problems without RLF reporting in a 3rd Generation (3G) or a 2nd Generation (2G) mobile communication system, the impact on a 3G or a 2G mobile communication system is reduced, and then correct self-optimization is performed to improve the performance of the mobile communication system.
Abstract:
A method for detecting a cause of radio link failure (RLF) or handover failure, in which the first base station triggers a handover process for the UE, and the mobility or handover information of the UE in the source cell is sent to a second base station. After the second base station receives the RLF report of the UE, the second base station can determine cause of a failure according to the RLF report of the UE and the mobility or handover information of the UE in the source cell. Other methods detect a cause of radio link failure (RLF) or handover failure. Application of the methods can improve the accuracy of determining the cause of the RLF or handover failure, improve efficiency of MRO and improve system performance.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present disclosure provides a method of a base station for supporting an inter-system handover from an evolved packet system (EPS) system to a 5th generation (5G) system. The method solves the data forwarding problem during the movement of a UE between an LTE system and a 5G system, so that the loss of data is avoided and the continuity of services is ensured.