Abstract:
It is easy to perceive a stimulus in a central portion of a visual field rather than in a peripheral portion thereof, and it is easy to perceive the stimulus for a younger examinee rather than for an older examinee even if the stimulus having the same luminance is indicated. In the perimeter according to the invention, the stimuli are indicated at various positions of a visual field dome, and the luminance of the stimulus is gradually raised before obtaining a response from an examinee through an operation switch. A value of the luminance of the indicated stimulus is set according to the position of the indicated stimulus and an age of the examinee, and the measurement accuracy is correct, thereby.
Abstract:
Information storage element 102 and transmitter-receiver 103 are molded in resin connector part 101 of fuel injection valve 100 which projects outside of the engine by molding. The precise control of an injection amount is enabled by using directly the characteristic of injection amount stored in information storage element 102, and obtaining the width of the injection command pulse corresponding to the injection amount instruction value. Thereby, the minimum injection amount which is the minimum value of the fuel supply amount which can be controlled is reduced.
Abstract:
Perimeter has input means for inputting identification data of an examinee and a kind of perimetry to be conducted, means for judging whether or not the examinee has already received the perimetry, means to read examinee measurement information, means to judge whether or not a kind of inputted perimetry is different from the past perimetry, means to compute and determine initial stimulus luminance of the perimetry to be conducted from now on as a value equal to the sensitivity which is shown in sensitivity distribution data or closer thereto from the sensitivity distribution data of the past perimetry if different kind is judged, and means for starting the perimetry with the determined initial stimulus luminance.
Abstract:
Information storage element 102 and transmitter-receiver 103 are molded in resin connector part 101 of fuel injection valve 100 which projects outside of the engine by molding. The precise control of an injection amount is enabled by using directly the characteristic of injection amount stored in information storage element 102, and obtaining the width of the injection command pulse corresponding to the injection amount instruction value. Thereby, the minimum injection amount which is the minimum value of the fuel supply amount which can be controlled is reduced.
Abstract:
A sensor with built-in circuits can be improved in the stability of the operation or characteristics. A circuit region and a sensor region are covered by a passivation film. The sensor region is partially covered by the passivation film. The sensor region and circuit region are protected by the passivation film, and an effect of the passivation film on the mechanical displacement of a diaphragm portion can be alleviated so that the sensor with built-in circuits may be improved in the stability of the operation or characteristics.
Abstract:
An S/N ratio of an output of a semiconductor pressure sensor is improved, the sensor being of an electrostatic capacitance type pressure sensor for generating an output based upon a ratio between capacitances of a pressure sensitive capacitance element and a reference capacitance element. This semiconductor pressure sensor has: a pressure sensitive capacitance element having an electrostatic capacitance Cs changing with a pressure to be detected; a reference capacitance element having an electrostatic capacitance Cr not changing with the pressure; and a unit for detecting the pressure by outputting a signal corresponding to a ratio between the capacitances Cs and Cr, wherein an initial value Cr0 of the capacitance Cr and an initial value Cs0 of the capacitance Cs are defined by 1.2
Abstract:
A non-contact sensor for sensing a rotational position of a rotating object is provided. A ring-shaped permanent magnet magnetized in the axial direction is sandwiched between two pairs of magnetic plates from above and below. Two pairs of upper and lower protruded magnetic substance portions are provided between the upper and lower magnetic plates at opposite outer ends thereof. Magnetic sensitive devices are inserted in air gaps between the two pairs of upper and lower protruded magnetic substance portions. A magnetic flux generated from the ring-shaped permanent magnet is substantially concentrated to the protruded magnetic substance portions and passes the magnetic sensitive devices. The amount of magnetic flux passing each magnetic sensitive device is substantially proportional to the rotational angle of the ring-shaped permanent magnet. The rotational position of the ring-shaped permanent magnet and hence the rotational position of a rotating shaft supporting the ring-shaped permanent magnet can be sensed in a non-contact manner as a signal output from the magnetic sensitive device. Since the magnetic flux is effectively concentrated to positions where magnetic sensitive devices are attached, a non-contact rotational position sensor having high accuracy and high sensitivity can be obtained.
Abstract:
A semiconductor composite sensor using a plurality of semiconductor piezoresistive gauge elements connected in series. The piezoresistive elements are separated so that a high potential terminal of one of the resistive elements having the same resistance values and the substrate of the other of the resistive elements will be connected with equal potential values. Potential difference values between semiconductor regions serving as respective resistive elements and the substrates are made equal.
Abstract:
A sensor adjusting circuit for adjusting a digital sensor, whose circuit scale is small and which can maintain high accuracy in a wide adjustment range is provided. A sensor adjusting circuit for adjusting an analog input signal inputted from a sensor and outputting it as another analog output signal in accordance with a physical quantity to be sensed, comprises: a first analog-to-digital converter having an analog integrator (2) for integrating the analog input signal, a comparator (3) for comparing an output of the analog integrator with a predetermined value, and a D/A converter (7) for outputting an output of the comparator as the input signal; and a second digital-to-analog converter (5) for converting the output of the comparator and outputting it as the analog output signal.
Abstract:
In a capacitance type pressure sensor, a diaphragm is formed of a fragile material using an impurity-diffused monocrystal silicon and constitutes a stable pressure-responsive structure which does not undergo a plastic deformation. Between the diaphragm and a movable electrode is formed an oxide film to diminish stray capacitance between the movable electrode and a substrate and also between the movable electrode and a impurity-diffused layer. The oxide film and the movable electrode are each divided into plural regions so that the divided regions of the movable electrode are formed on the divided regions of the oxide film, thereby diminishing stress strain induced by a difference in therm expansion coefficient among the diaphragm, oxide film and movable electrode. The upper surface of a fixed electrode is covered with a structure for the fixed electrode which structure is formed by an insulating polycrystal silicon film not doped with impurity whereby the rigidity of the electrode is enhanced and it is possible to diminish a leak current.