Abstract:
A method of producing a printing plate comprises: (a) providing a printing plate precursor comprising a topmost etchable first layer and a second layer located below the first layer, wherein the first and second layers have different affinities for at least one printing liquid; (b) imagewise providing atomized fluid particles in an interaction zone located above the surface of the first layer; and (c) imagewise directing laser energy into the interaction zone, wherein the laser energy has a wavelength which is substantially absorbed by the atomized fluid particles in the interaction zone, and the absorption of the laser energy causes the atomized fluid particles to imagewise impart kinetic energy to and etch the first layer. Lithographic and flexographic printing plates may be prepared according to this method, including waterless plates, negative-and positive-working plates, and processless plates.
Abstract:
A method of developing a photosensitive planographic printing plate which includes a support and a recording layer and which has been exposed to a light beam with a developer, wherein the photosensitive planographic printing plate is immersed in the developer while being conveyed, and development is accelerated by brushing the immersed photosensitive planographic printing plate with a brush member produced by winding, around a peripheral surface of an axially rotating roller, a brushing band composed of a sheet-like substrate containing a hairy material woven therein.
Abstract:
A lithographic printing plate precursor comprises: a support; and an image-forming layer including a copolymer containing a specific fluoroaliphatic group and a repeating unit corresponding to at least one of a poly(oxyalkylene) acrylate and a poly(oxyalkylene) methacrylate.
Abstract:
A heat-sensitive lithographic printing plate in which the occurrence of stains in printing can be prevented without increasing the exposure of a laser, comprising a support having provided thereon a hydrophilic layer having a crosslinked structure, and a layer containing a polymer having on a side chain a group in which the solubility in water can be changed by heat, the layer being provided on the hydrophilic layer.
Abstract:
This invention provides a support for a lithographic printing plate, and an original form of a heat-sensitive lithographic printing plate, which comprises a hydrophilic film formed on a metallic base whose surface has been roughened, said hydrophilic film having a heat conductivity of 0.05-0.5 W/(mnullK) in the direction of its film thickness, which when used as the development on machine type, exhibits good on-press, or good non-treatment developability, a high sensitivity, a long press life and a preferable stain resistance and ink removal property upon printing and which, when used as a conventional thermal positive or negative type, makes efficient utilization of heat for the formation of image, has a high sensitivity and exhibits a long press life and a good stain resistance in a nonimage area, wherein the non-treatment in which the development is not performed.
Abstract:
There is disclosed a direct drawing type lithographic printing plate material comprising a support and an image-forming layer formed on the support, wherein the image-forming layer is formed on a roughened surface of the support and contains a binder and a pigment having a relatively small particle size. The direct drawing type lithographic printing plate material of the present invention has extremely excellent water retention property and is capable of suppressing scumming upon printing, degradation of printing density and image blur even when the amount of a humidifying solution to be supplied is increased upon printing, and minimizes printing defects which otherwise occurs when a printing operation once stopped is resumed or the like.
Abstract:
A positive-working printing plate precursor for wet lithographic printing is disclosed which comprises a support having a hydrophilic surface and a coating comprising a first layer closest to the support, said first layer containing an oleophilic phenolic resin soluble in an aqueous alkaline developer, and a second layer containing an amphyphilic polymer, wherein (a) the second layer is capable of preventing the aqueous alkaline developer from penetrating into the first layer to an extent that substantially no dissolution of unexposed coating occurs upon immersion in the aqueous alkaline developer during a time period t2; (b) and wherein said capability of the second layer of preventing the aqueous alkaline developer from penetrating into the first layer is reduced upon exposure to heat or light to an extent that substantially complete dissolution of exposed coating occurs upon immersion in the aqueous alkaline developer during a time period t1; wherein t2>t1 and t2nullt1 is at least 10 seconds; and wherein the amphyphilic polymer is a block- or graft-copolymer comprising (i) a poly(alkylene oxide) block and (ii) a block comprising siloxane and/or perfluorohydrocarbon units.
Abstract:
A material for making a lithographic printing plate is provided comprising on a glass support a surface capable of being differentiated in ink accepting and ink repellant areas in accordance with an image pattern, characterised in that the glass support has a thickness of not more than 0.5 mm, a failure stress of at least 107 Pa and a Youngs modulus of not more than 1011 Pa.
Abstract:
A planographic printing original plate which comprises an intermediate layer which contains a polymer including, as a monomer unit, at least a monomer having an acid group and a monomer having an onium group; and a photosensitive layer comprised of a positive-type photosensitive composition for an infrared laser which contains: (A) at least an alkali-soluble polymeric compound; (B) a compound which has a function to deteriorate the solubility of the alkali-soluble polymeric compound in an alkaline aqueous solution due to compatibility with the alkali-soluble polymeric compound, the function being deteriorated by compound (B) being heated; and (C) a compound which generates heat by absorbing light, the intermediate layer and the photosensitive layer being formed sequentially on a support which has been subjected to a hydrophilizing treatment.
Abstract:
According to the present invention there is provided a heat-sensitive imaging element for making lithographic printing plates. The heat-sensitive imaging element comprises an image-forming layer comprising hydrophobic thermoplastic polymer particles having a specific particle size and polydispersity for obtaining printing plates with an improved sensitivity, excellent developability, high throughput and less scumming.