Abstract:
In order to generate a multiple of a unit U, N times U, by a digital circuit is provided, where U is a rational number and N is a natural number, the method comprises the following steps (1) to (5). (1) Where A, B and C are natural numbers, A>1, B>C and UnullAnullC/B, the values A, B and C are stored. (2) A multiple of A, N times A and a multiple of C, N times C are generated. (3) The multiple of C is compared with the denominator B. (4) The multiple of A is modified according to the result of the comparing step (3). (5) The modified multiple of A is output as the multiple of U.
Abstract translation:为了产生单元U的倍数,通过数字电路提供N次U,其中U是有理数,N是自然数,该方法包括以下步骤(1)至(5)。 (1)其中A,B和C为自然数,A> 1,B> C,U = A + C / B,存储值A,B和C。 (2)A的倍数,N次A,C的倍数,N次C。 (3)将C的倍数与分母B进行比较。(4)根据比较步骤(3)的结果修改A的倍数。 (5)A的修正倍数以U的倍数输出
Abstract:
A direct digital frequency synthesizer and a hybrid frequency synthesizer combining the direct digital frequency synthesizer and a phase locked loop is provided. The direct digital frequency synthesizer includes a phase accumulator that is configured to generate a discrete phase signal. Spurious phase modulation in the discrete phase signal is reduced by a noise shaper, and the output of the noise shaper is then used to address a phase-to-amplitude translator. The phase-to-amplitude translator generates a discrete waveform which is converted to a continuous waveform by a digital to analog converter. The hybrid frequency synthesizer uses a mixer to combine a reference frequency generated by a reference source and a DDFS output signal generated by a direct digital frequency synthesizer. The output from the mixer is then coupled to the input of a phase locked loop which multiplies the mixer output to generate the frequency synthesizer output.
Abstract:
The invention concerns a method and apparatus to synthesize a frequency employing digital phase words to represent successive phase values. A digital dither signal generator is used to generate a succession of dither words which are summed with the phase words to form address words. The address words are used to address a store to convert the address words to waveform values. The periodic quantisation noise introduced by the digital process is made more random by means of the dither words thereby reducing the quantisation noise components while accepting an increased total noise power. The synthesizer is of particular advantage when used to generate the reference frequency for a frequency multiplier implemented as a phase lock loop. By making the dither sequence repetition frequency outside the phase lock loop bandwidth, the spurious components are removed from the frequency range of interest.
Abstract:
A digital waveform oscillator generates digitized waveforms without distortion using a lookup table. The frequencies which may be generated using direct lookup tables at their fundamental table frequencies are increased according to this invention by including multiple cycles of the waveform within a single table. The selection of a table length L and a number of cycles N to be stored in a lookup table is done in a manner to optimize corresponding values of the frequencies to be generated and the sample rate.
Abstract:
A technique for reducing the spurious signal content in digital sinusoid synthesis. Spur reduction is accomplished through dithering both amplitude and phase values prior to word-length reduction. The analytical approach developed for analog quantization is used to produce new bounds on spur performance in these dithered systems. Amplitude dithering allows output word-length reduction without introducing additional spurs. Effects of periodic dither similar to that produced by pseudo-noise (PN) generator are analyzed. This phase dithering method provides a spur reduction of 6(M+1) dB per phase bit when the dither consists of M uniform variates. While the spur reduction is at the expense of an increase in system noise, the noise power can be made white, making the power spectral density small. This technique permits the use of a smaller number of phase bits addressing sinusoid look-up tables, resulting in an exponential decrease in system complexity. Amplitude dithering allows the use of less complicated multipliers and narrower data paths in purely digital applications, as well as the use of coarse-resolution, highly-linear digital-to-analog converters (DACs) to obtain spur performance limited by the DAC linearity rather than its resolution.
Abstract:
A device for digitally shaping the quantization noise of an N-bit digital signal, N being a positive integer, comprises: a register for masking out selected bits of the N-bit digital signal to produce an M-bit digital signal, M being a positive integer less than N; a digital noise-shaping coder, coupled to the register, for shaping the quantization noise of the masked out bits; and an accumulator, coupled to the register and the coder, for accumulating the digital signals received from the register and the coder. Likewise, a method of digitally shaping the quantization noise of an N-bit digital signal, N being a positive integer, comprises the steps of: masking selected bits of an N-bit digital signal to produce an M-bit digital signal, M being a positive integer less than N; digitally coding the masked bits of the N-bit digital signal to produce a B-bit digital signal, B being a positive integer less than N-M; and accumulating the M-bit digital signal and the B-bit digital signal.
Abstract:
A skew tester (60) measures output timing skew parameters OSHL and OSLH between multiple output signals of an integrated circuit (IC) device under test (DUT) having an input and multiple outputs. A measurement signal generating circuit (15,16,18,20) generates a square wave measurement signal at a test signal frequency synchronized with a clock signal. The measurement signal generating circuit uses direct digital synthesis to provide a specified phase shift resolution. A test signal generating circuit (15,22,24) generates a square wave test signal at the test signal frequency using the same clock signal. The test signal and measurement signal are therefore synchronized in frequency. The test signal is applied to the input of a DUT (25) and a switch (30) selects one of the DUT output signals. The selected output signal and the square wave measurement signal are applied to the inputs of a comparator (45) which generates an output according to the difference in phase between the selected output signal and measurement signal. A threshold detector circuit (50) delivers a count signal in response to an output from the comparator (45) related to a threshold level. A programmable controller (12) is programmed to shift the phase of the measurement signal toward the phase of the selected output signal in phase increments or steps equal to the specified phase shift resolution during occurrence of count signals. The microcontroller counts phase shift increments to a maximum count (MAXCOUNT) at which the phase of corresponding edges substantially coincide and generates a skew number for comparison with skew numbers from the other multiple outputs and for calculating skew parameters OSHL and OSLH.
Abstract:
Certain operational characteristics of a crystal (104) are measured during a testing and grading process. Once determined, information representing these operational characteristics are stored in memory (120) and utilized by a controller (122) to increment a phase increment register (114) upon determining the crystals ambient temperature via a temperature sensing circuit (124). The value stored in the phase increment register (114) is then sent to a phase accumulator (116) where successive phase increments are summed together. This summed value is in turn sent to a sine lookup table (118) where the instantaneous phase value is converted into sine amplitude. Finally, a digital to analog converter (126) converts the amplitude bit stream into an analog signal for use as a reference oscillator frequency having extremely high frequency resolution. The above mentioned process is repeated every clock cycle until a complete sine wave is produced at which point the phase accumulator is reset to zero and the process begins again.
Abstract:
A numerical control type oscillator whose output oscillation frequency is controlled depending on input numerical data, comprises: first accumulation means for accumulating a first set value which is set depending on the input numerical data with a first frequency and sequentially outputting the accumulated value; second accumulation means for accumulating a second set value which is set depending on the input numerical data with a second frequency and varying the first set value by a predetermined value temporarily when the accumulated value reaches a predetermined maximum value; and frequency generation means for outputting a frequency depending on an output of the first accumulation means as an oscillation frequency.
Abstract:
A sine output or phase interpolation direct digital synthesizer for use in satellite programs having a random or pseudorandom code generator for summing a random digital word whose value ranges from zero to just under the least significant bit of a digital-to-analog converter with the current register value normally sent to the converter for reducing the spurious sidebands associated with the finite resolution of the converter within the synthesizer, the sum being truncated to the resolution of the converter and for controlling the converter, the spurious sidebands being reduced by randomization of the periodic behavior associated with the truncation process while lowering the total phase noise.