Abstract:
A frame error detection method includes the steps of determining a plurality of comparison values which include a given comparison value depending on a frame energy of a given speech frame or a change in frame energy between the given speech frame and a preceding speech frame. The given speech frame is identified as a bad speech frame if a logical combination of a plurality of criteria is met. One of the criteria is based on a comparison of a threshold value with the given comparison value depending on the frame energy or the change in frame energy. A device for frame error detection and a receiver including the device for frame error detection are also provided.
Abstract:
In a synchronous fixed frame boundary system with variable data rates, a transmitter inserts into a current frame an indication of the data rate of the next frame. After the first frame is received and processed at a receiver, the variable data rates of subsequent frames are known before processing, thereby reducing processing load. Furthermore, because the rate indication is inserted into the frame to be error protected along with the rest of the frame information, reliability is high, while additional data overhead and complexity are very low. For example, North American code division multiple access (CDMA) digital cellular telephone systems and personal communication system (PCS) utilize variable data rate transmissions. As a station modem (SM) assembles a current frame for convolutional encoding and further processing, the SM inserts a rate indication for the subsequent frame in accordance with information from a vocoder and CPU of the appropriate data rate for the subsequent frame. On the receiving end, rather than needing to decode multiple times to determine the appropriate data rate for every frame, the receiving SM discovers the rate of each frame by analyzing the information contained in the immediately preceding frame. The rate determination process also includes a verification method to ensure accurate data rate determination.
Abstract:
An improved error detection and error concealment for Viterbi decoding of convolutionally encoded data is provided. The most sensitive part of the data is parity encoded and sent with parity and this data with the next most sensitive data are convolutionally encoded and sent with the least sensitive data over a transmission channel to a receiver. At the receiver the convolutionally encoded data is decoded using the Viterbi algorithm. The decoder compares the parity computed from decoded data with the decoded parity and if they are not equal generates a Bad Frame Indicator (BFI) flag and also determines which decoded parameters are likely bad and hence generates a Bad Parameter Indicator (BPI) flag for those parameters, by determining the confidence levels for the parameters and comparing against pre-selected thresholds. The decision to discard a decoded parameter is dependent on the BFI flag and the BPI flag of that parameter.
Abstract:
A discriminating circuit stores a flag designating a received radio signal as belonging to a traffic channel, a control channel, or an unidentified channel. If the flag does not indicate the traffic channel, the discriminating circuit decodes the signal and detects errors on the assumption that the signal belongs to the control channel. The detected errors include convolutional code errors, which are detected by re-encoding the decoded signal, as well as errors in other types of codes. If the flag indicates that the channel is unidentified, a counter is incremented according to the paucity or absence of errors. When the counter reaches a threshold value, the flag is set to indicate the control channel.
Abstract:
Protection of a digital multi-pulse speech coder from fading pattern bit errors common in a digital mobile radio channel is accomplished with error detection techniques which are simple to implement and require no error correcting codes. A synthetic regeneration algorithm is employed which uses only the perceptually significant bits in the transmitted frame. Separate parity checksums for line spectrum pair frequency data, pitch lag data and pulse amplitude data are added to each frame of speech coder bits in the transmitter. The bits are then transmitted through a mobile environment susceptible to fading that induces bursty error patterns in the stream. At the receiving station, the parity checksum bits and speech coder bits are used to determine if an error has occurred in a particular section of the bit stream. Detected errors are flagged and supplied to the speech decoder. The speech decoder uses the error flags to modify its output signal so as to minimize perceptual artifacts in the output speech. Separate checksums are developed for subsets of line spectrum pair (LSP) coefficients and related speech data, whereby a single subset may be error-detected and replaced, rather than an entire frame.
Abstract:
In 5G-Advanced, and especially 6G, message faulting is expected to be a major impediment due to phase noise and increased pathloss attenuation, as well as network crowding. Therefore, new procedures are disclosed enabling the receiver to identify and correct message faults without a retransmission and without using bulky FEC (forward error correction) bits. For example, the receiver can measure the “distance” of each received message element from the nearest modulation state, and thereby quantify the modulation quality, or suspiciousness, of each message element. To correct the message, the worst-modulated ones can be altered first, generally selecting the next-closest states since small distortions are more likely than large distortions. The result: rapid message recovery, internal to the receiver processor, without adding to the message size or the latency.
Abstract:
In 5G-Advanced and especially 6G, a primary concern is the increase in message faulting due to higher pathloss and phase noise at FR2 frequencies. Current methods for dealing with faults include packing the message with bulky error-correction (FEC) bits which are often ineffective, or automatically requesting a costly retransmission. As a substantially better alternative, the receiver may identify the specific fault locations and attempt an immediate repair by testing the modulation quality of each message element. For example, for a QAM-modulated message, the receiver can measure the I and Q branch deviations relative to predetermined levels, and the message element(s) with largest deviations is/are likely faulted. Alternatively, if the message is advantageously modulated according to the waveform amplitude and phase, the receiver can determine the amplitude and phase deviations relative to predetermined values. An AI model can greatly assist in the fault localization and in finding the corrected values.
Abstract:
A central challenge in next-generation 5G/6G networks is achieving high message reliability despite very dense usage and unavoidable signal fading at high frequencies. To provide enhanced fault detection, localization, and mitigation, the disclosed procedures can enable an AI model (or an algorithm derived from it) to discriminate between faulted and unfaulted message elements according to signal quality, modulation parameters, and other inputs. The AI model can estimate the likelihood that each message element is faulted, and predict the most probable corrected value, among other outputs. The AI model can also consider the quality of a demodulation reference used to demodulate the message, and the quality of the associated error-detection code. The AI model can also consider previously received messages to the same receiver, or messages of a similar type. Fault mitigation by the receiver can save substantial time and resources by avoiding a retransmission. Many other aspects are disclosed.
Abstract:
Corrupted messages in 5G and 6G are usually discarded, leading to a retransmission with its added costs, delays, and background generation. Therefore, disclosed herein are methods for a wireless receiver to determine which message elements are faulted, and in many cases to correct them, based on parameters of the waveform signal in each message element. Multiple parameters may be combined for better sensitivity to the fault condition. For example, the indicator parameters may be the modulation deviation of each message element, its amplitude or phase noise level, characteristic interference patterns between symbol-times, a polarization anomaly, a frequency offset, or combinations of these. After localizing the likely faulted message elements, the receiver may be able to recover the message by correcting the waveform signal or the demodulation value, thereby saving time and energy at near zero cost.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive a transport block (TB), the receiving the TB including performing log likelihood ratio (LLR) calculations on one or more parts of the TB based at least in part on a determination that the TB is likely to fail a cyclic redundancy check (CRC). The UE may transmit an indication of the one or more parts of the TB for which the UE performed LLR calculations. Numerous other aspects are described.