Abstract:
An image capture, conversion, compression, storage and transmission system provides a data signal representing the image in a format and protocol capable of being transmitted over any of a plurality of readily available transmission systems and received by readily available, standard equipment receiving stations. In its most comprehensive form, the system is capable of sending and receiving audio, documentary and visual image data to and from standard remote stations readily available throughout the world.
Abstract:
In facsimile-communicating an original when the Internet selection state in an operation unit is set to “automatic selection”, the original is communicated by selecting the e-mail-based Internet for an A4 original size, and the session-based Internet for a B4 or A3 original size. At the same time, the original information is transmitted in accordance with the transmission mode of its own apparatus, the encoding method determined based on the reception capability of a facsimile apparatus at a reception destination, and the receiving-side output original size and resolution.
Abstract:
A method and apparatus for preparing an image for downloading over a link. The method includes receiving a user selection for an image to prepare, retrieving current user settings reflective of desired settings for compressing the image and automatically presenting a plurality of variations of the image to the user where each variation is derived using compression settings that are scaled from the current user settings.
Abstract:
There is provided a decoding apparatus and a decoding method which are for using compressed data efficiently by making the resolutions of the individual components differ from one another. A decoding apparatus decodes compressed data that represents an image signal composed of a plurality of components as a compressed code by making the resolutions of the individual components differ from one another. The decoding apparatus basically comprises input sections 5-Y, 5-I, 5-Q which decode compressed data and take in the individual components independently, a reduction circuit 5-Y-1 which reduces and changes a size corresponding to the processing unit and resolution of any one of the components, and a conversion section 5-6 which converts into a decoded image signal in a specific format by using reduced components and uncompressed components.
Abstract:
The imaging system converts raw data for an image to formatted data concurrently with compressing the formatted data for the image. The exemplary imaging system includes an image processor for generating blocks of formatted data from raw image data. The exemplary imaging system also includes an image compressor for compressing the blocks of formatted data. The compressor compresses one or more of the blocks while the image processor generates one or more blocks of formatted data.
Abstract:
This invention has as its object to provide an image processing apparatus, which can obviate the need for image re-input, can effectively generate encoded data that falls within a set size, and can minimize deterioration of image quality. To this end, an image processing apparatus according to this invention includes first discrimination unit for discriminating the type of image of each of a plurality of regions, which form image data input, second discrimination unit for discriminating if the image data is inputted by a continuous scan of images, selection unit for selecting an encoding method used in compression of each region on the basis of discrimination results of the first and second discrimination unit, first compression unit for compressing image data of each region using the encoding method selected by the selection unit, and second compression unit for compressing information that pertains to the type of image of each region.
Abstract:
An image handling apparatus is disclosed, including an operation panel, hardware resources, a transferring part, and an image generation controlling part. The transferring part transfers image handle information input at the input screen to an external apparatus. The image generation controlling part receives and parses image generation information for at least one of the hardware resources to execute an image generation based on the image handle information, from the external apparatus in response to an instruction of the image generation, so that at least one of the hardware resources executes the image generation.
Abstract:
A communications system receives fax image data encoded with a specific facsimile data format and carrying transmission codes having no relation with image contents, converts the received fax image data into Internet-fax data in a specific format, and transfers the Internet-fax data to an Internet terminal as an in-system terminal. The communications system includes a receiver to receive the fax image data supplied via a regular communications network, a comparator to compare an encoding mode for the received fax image data and an encoding mode for the Internet-fax data for the Internet terminal, a converter to add format data for the Internet-fax data to the fax image data with no decoding of the fax image data if there is a match in the comparison, for converting the format data-added fax image data into the Internet fax data, and a transmitter to transmit the converted Internet fax data to the Internet terminal.
Abstract:
An image forming apparatus and method capable of decompressing and compressing image data. More specifically, the apparatus and method include decompressing first compressed image data, processing the decompressed image data, selecting from among a plurality of quantization tables a quantization table providing a compression ratio lower than a compression ratio of the first compressed image data, and compressing the processed image data.
Abstract:
A method of storing an image in a digital camera, comprising the steps of: capturing the image using the selected quantization table. A method of storing an image in a digital camera, wherein the step of selecting a quantization table comprises the steps of: selecting a quality setting; compressing the image using a quantization table corresponding to the selected quality setting; decompressing the image; evaluating the decompressed image with the image quality metric; and, adjusting the quantization table such that the quality metric matches the selected quality setting.