Abstract:
The length of the optical fiber section under tension expands by a certain amount that is proportional to the level of tension applied to it. Monitoring the variations in the phase of the arriving signal allows to discover a fiber that is subject to a certain level of mechanical tension. With the method and apparatus according to the present invention it is possible to protect optical communication channels against failures in an optical transmission fiber that are caused by any kind of mechanical disturbances.
Abstract:
A method for bi-directionally transmitting digital optical signals over an optical transmission link in which a first optical transmit signal is created according to a first binary digital signal in such a way that the bit information of the first binary digital signal is included in first sections of the symbol interval of the first optical transmit signal. A second optical transmit signal is created by creating an optical wavelength reuse signal using the first optical transmit signal received at the second end of the optical transmission link, the optical wavelength reuse signal being modulated according to a second digital signal in such a way that the bit information of the second digital signal is included in second sections of the symbol interval of the first optical transmit signal received.
Abstract:
A method for scaling traffic engineering, TE, routing in a network, having a plurality of network elements (nodes) connected in a given layer to each other via links TE domain segments of a TE domain of said network are collapsed into a virtual TE nodes (VNs). Each VN having an allocated DE domain unique identifier and a detailed connectivity matrix, DCM, to provide a hierarchically virtualized network topology of the network.
Abstract:
An asymmetrical network switch adapted to auto-discover and advertise into a traffic engineering, TE, domain a switch detailed connectivity matrix, SDCM, containing for each allowed switching combination of interfaces of said asymmetrical network switch at least one switch detailed connectivity matrix entry, SDCME, wherein each said SDCME represents an internal to said asymmetrical network switch potential connection interconnecting the interfaces of said interface switching combination, wherein a SDCME advertisement includes a switch detailed connectivity matrix entry cost vector, SDCME CV, which comprises a set of attributes describing cost penalties in terms of various service characteristics that a network service incurs if it selects a path or a tree traversing the asymmetrical switch in accordance with the SDCME.
Abstract:
An optical fiber transmission system adapted to provide a remote passive identification of components deployed in said transmission system, wherein each component comprises an associated passive optical identification unit adapted to provide identification of a component type of the respective component on the basis of a received optical identification signature carried in an optical identification signal to said component.
Abstract:
A method and an apparatus for providing a flexible secondary data path control, said method comprising the steps of: detecting (S1) a primary data path failure of a primary data path between a customer premise site (3) and a central office site (4); initiating (S2) a corresponding secondary data path if a primary data path failure of said primary data path has been detected; initiating (S3) a measurement of data path characteristics of said initiated secondary path or utilizing constantly monitored data path characteristics of paths for an available secondary data path; and determining (S4) services to be provided via said secondary data path depending on the measured data path characteristics of said secondary data path.
Abstract:
Provided is an optical network system and optical network unit (ONU) structure enabling a passive optical access network having a meshed structure with at least two central nodes and plurality of ONUs. One embodiment employs a partially or fully meshed structure of optical fibers between customer locations and multiple optical line terminal (OLT) locations creating a passive optical access network. The ONUs can communicate with a neighboring OLT or ONU using a symmetrical or asymmetrical TDM scheme, and convert between the different TDM schemes. For this purpose, the ONU structure includes two transceiver units, one connected to the western network port and the other to the eastern. The ONU can establish communication between either network port and a further ONU or an OLT, with the ONU controller adapted for passing through data, and converting TDM schemes.
Abstract:
A system installed in a cross-border area between a provider network of a provider and a customer network of a customer includes: a smart optical network termination device (NT) at a site of the customer, wherein the smart optical NT is configured to implement a demarcation point between the customer network and the provider network, and wherein the smart optical NT is independent of a data rate passing through it and an optical interface connected to it; and a monitoring device located at a point of presence (POP) of the provider network. The smart optical NT is further configured to monitor a coupling of optical power by the customer into the provider network and to interact with the monitoring device via at least one traffic analysis point (TAP) for connectivity validation from the POP to the demarcation point.
Abstract:
The subject matter described herein provides a method and a system for continuous-variable quantum key distribution, CVQKD, between a sender sub-system and a receiver sub-system. The method includes transmitting a quantum key distribution, QKD, signal from a quantum communication transmitter to a quantum communication receiver over a quantum communication channel. The method further includes performing post-processing including forward error correction, FEC as a part of reverse reconciliation between the receiver sub-system and the sender sub-system, where erroneous frames are discarded for key establishment. A value of the reconciliation efficiency, VRE β, is set to be larger than 1.
Abstract:
A bidirectional optical communication link, OCL, (1) comprising a first optical transmission link, OTL1, adapted to transmit an optical signal from a near-end location (NEL) via a first optical fiber (2-1) to a remote-end location (REL); and a second optical transmission link, OTL2, adapted to transmit an optical signal from the remote-end location (REL) via a second optical fiber (2-2) to the near-end location(NEL); wherein at least one of the optical transmission links, OTL1, OTL2, comprises a remote optically pumped amplifier, ROPA, (3-1,3-3) having a gain medium which is pumped with pump light received by that gain medium through a third optical fiber (4) from a pump laser source provided at the near-end location (NEL) or provided at the remote-end location (REL) to supply the gain medium of the remote optical pump amplifier, ROPA, (3-1,3-2) with pump power.