Abstract:
A method includes, in response to receiving implicit signaling of the radio resource, and in response to a plurality of wireless communication system cell-specific static and semi-static input parameters, determining a plurality of output parameters and allocating radio resources using the determined output parameters. Also disclosed are computer readable storage mediums for storing programs that operate in accordance with the methods, as well as various devices that operate in accordance with the methods and that include the computer readable storage mediums.
Abstract:
A detect decision is made by non-coherently combining results from correlating a preamble (CAZAC) sequence with base/root sequences used in the cell and setting a detection threshold based on those combined results. Another threshold can be set based on coherently combining results from correlating the preamble sequence, in which case the detect decision is based on satisfying either one of the thresholds. Where the sequence repeats in the same preamble, the results that are combined are from correlating the first instance of the CAZAC sequence and from correlating the second instance of the CAZAC sequence. Where the sequence does not repeat, different segments of the CAZAC sequence, each less than the whole and not necessarily of the same length, are correlated for a partial correlation on each segment, then the segments are combined and used to set the detection threshold. Detection may be done in stages, adjusting the threshold after the first stage based on comparing the results of non-coherent and coherent combining.
Abstract:
A network element may provide a plurality of user equipments with a dedicated pilot sequence for uplink reference signal transmission. A user equipment may, after receipt of a dedicated pilot sequence, spread the pilot sequences using a block spreading method.
Abstract:
It is provided a solution for selecting the length of a transmission time interval for high-speed packet radio communications between a base station and a mobile station. The length of the transmission time interval used in data transfer is selected on the basis of channel conditions between the mobile station and the base station. An average value for a channel quality metric representing the channel conditions is calculated and the calculated average value of the channel quality metric is associated with a pre-determined length of the transmission time interval. That length of the transmission time interval is then selected for the data transfer between the mobile station and the base station.
Abstract:
In one non-limiting aspect thereof, the exemplary embodiments of this invention provide a user equipment that includes a data processor; and a wireless transceiver configured to transmit uplink pilot signals during sub-bands and slots, wherein at least three blocks (LB1, LB2 and LB3) are reserved for pilot signals. LB1 and LB2 include in-band pilot signals transmitted using a dedicated pilot code. The wireless transceiver is further configured to transmit LB3 using a frequency hopping pattern and pilot code allocation that are based on a slot and a sub-band in which a first LB3 is transmitted. Thus, the code and hopping pattern of a scheduled user equipment are resource-specific (defined by an allocated resource), as opposed to being user equipment-specific.
Abstract:
A method and apparatus for initiating a telecommunications uplink from a mobile terminal to a telecommunications network. A preamble signal is transmitted from the mobile terminal to the network in accordance with a transmission parameter of the mobile terminal. The parameter is changed and the preamble retransmitted until successful receipt in the network is confirmed. Changing the transmission parameter alters the signal diversity of one or more preambles as received by the base station.
Abstract:
A receiver of a communication system includes means for receiving repetition-coded data. The receiver also includes means for generating symbol information from the received repetition-coded data. The receiver also includes means for storing symbol information over a predetermined period and means for making tentative symbol decisions by combining the stored symbol information.
Abstract:
The invention relates to a RAKE receiver of a CDMA system using IRC, the receiver receiving a radio signal by using at least two antenna branches. In accordance with the invention a RAKE finger comprises: a weighting coefficient part for forming weighting coefficients maximizing the Signal-to-Interference-and-Noise Ratio for each antenna branch; a multiplier for multiplying a pilot part, despread by a despreader in each antenna branch, by a weighting coefficient; a multiplier for multiplying a data part, despread by a despreader in each antenna branch, by a weighting coefficient; an antenna branch summer for combining the despread pilot parts, received via the separate antenna branches and multiplied by the weighting coefficient, to one pilot signal; an antenna branch summer for combining the despread data parts, received via the separate antenna branches and multiplied by the weighting coefficient, to one data signal. In addition, the receiver comprises a RAKE finger summer for combining the data signals of the RAKE fingers operating by different delays to a sum data signal representing the received bits.