Abstract:
In a liquid crystal display apparatus, a first control signal bus line receives a first control signal. A second control signal bus line receives a second control signal that lags behind the first control signal. A de-multiplexer circuit includes a first switching element and a second switching element. The first switching element switches a current path between a first source line and a first data line in response to the first control signal, and the second switching element switches a current path between the first source line and a second data line in response to the second control signal. A pixel part includes a first pixel connected to the first control signal bus line and corresponding to a first color filter, a second pixel connected to the second control signal bus line and corresponding to a second color filter, and a third pixel corresponding to a third color filter, wherein the third pixels are alternately connected to the first control signal bus line and the second control signal bus line.
Abstract:
A liquid crystal display includes a first substrate and a second substrate facing each other, common voltage wiring disposed on the first substrate and transmitting a common voltage, a first insulating layer disposed on the common voltage wiring, a common electrode disposed on a whole surface of the second substrate, a first conductive member disposed between the first substrate and the second substrate and electrically connecting the common electrode and the common voltage wiring to each other, and a sealant combining the first substrate and the second substrate. The first insulating layer includes a first contact hole exposing a first portion of the common voltage wiring and a plurality of a second contact hole exposing a second portion of the common voltage wiring, the second contact hole having a smaller area than the first contact hole.
Abstract:
A mobile terminal includes a first body, a second body, and a slide-tilt module that slides the first body relative to the second body within a first section and tilts the first body to a preset angle relative to the second body within a second section, the slide-tilt module including a sliding unit to slidably connect the first body and the second body to each other and a tilting unit to tilt the first body to the preset angle, such that the tilting unit is inactive and the first body is slid in the first section, and the tilting unit is activated in the second section such that the first body is tilted.
Abstract:
The present invention relates to a module and method for detecting a defect of a thin film transistor (TFT) substrate, which can detect disconnection of a gate line of the TFT substrate having gate drivers provided with a dual structure in which the gate drivers are provided at both sides of the gate lines. There is provided a module and method for detecting a defect of a TFT substrate, wherein gate lines are separated into two portions by cutting a central region of the gate lines, gate power is supplied to the gate lines of which central portions are cut through gate drivers provided at both sides of the gate lines, and a signal of a negative voltage level is supplied to data lines, so that disconnection of the gate lines can be detected.
Abstract:
A thin film transistor substrate includes; a substrate, a plurality of gate lines disposed on the substrate, a plurality of data lines disposed substantially perpendicular to the gate lines, wherein the plurality of data liens include a plurality of outermost data lines, a plurality of thin film transistors (“TFTs”) connected to the gate and data lines, a plurality of pixel electrodes connected to the plurality of TFTs, and a plurality of dummy patterns connected to the outermost data lines.
Abstract:
A liquid crystal display that is subject to pixel-high defects due to manufacturing anomalies is provided with programmable repair means for each pixel electrode. In one embodiment, a transistor-array substrate is provided with plural gate lines that are separated from each other by a first interval, plural data lines that are insulated from the gate lines while crossing the gate lines, and separated from each other by a second interval larger than the first interval, thereby defining plural pixel areas. Each pixel area has a corresponding pixel unit comprising a switching device, pixel electrode, and repair electrode. The repair electrode branches from a neighboring gate line and extends such that the repair electrode is in overlapping spaced-apart relation with the pixel electrode and selectively connectable to the pixel electrode. Accordingly, a pixel where a high pixel defect occurs can be repaired by selective connection with the repair electrode, thereby improving display quality of the liquid crystal display.
Abstract:
A gate driving circuit includes cascaded stages, each including a pull-up part, a carry part, a pull-up driving part, a holding part and an inverter. The pull-up part pulls up a gate voltage to an input clock. The carry part pulls up a carry voltage to the input clock. The pull-up driving part is connected to a control terminal (Q-node) common to the carry part and the pull-up part, and receives a previous carry voltage from a previous stage to turn on the pull-up part and the carry part. The holding part holds the gate voltage at an off-voltage, and the inverter controls at least one of turning on the holding part and turning off the holding part based on an inverter clock. A high level of the inverter clock in a given horizontal period (1H) temporally precedes a high level of the input clock by a predetermined time interval.
Abstract:
Provided are a lens-interchangeable digital photographing apparatus that can use a suitable lens according to a photographing circumstance, a method of controlling the lens-interchangeable digital photographing apparatus, and a recording medium having recorded therein a program for the method. The lens-interchangeable digital photographing apparatus includes a photographing circumstance analysis unit, a lens suitability determination unit for determining whether a lens installed in the digital photographing apparatus is suitable for a photographing circumstance, a lens search unit for searching for lenses suitable for a photographing circumstance, and a display unit. If the lens suitability determination unit determines that the installed lens is not suitable for the photographing circumstance, lenses suitable for the photographing circumstance analyzed by the photographing circumstance analysis unit from among lenses searched by the lens search unit are displayed on the display unit to be recommended.
Abstract:
A thin film transistor substrate includes; a substrate, a plurality of gate lines disposed on the substrate, a plurality of data lines disposed substantially perpendicular to the gate lines, wherein the plurality of data liens include a plurality of outermost data lines, a plurality of thin film transistors (“TFTs”) connected to the gate and data lines, a plurality of pixel electrodes connected to the plurality of TFTs, and a plurality of dummy patterns connected to the outermost data lines.
Abstract:
A driving circuit for a display device including a plurality of stages connected to each other and sequentially generating output signals, wherein each of the stages comprises a plurality of transistors, wherein each of the transistors comprises: a control electrode; a first insulating layer formed on the control electrode; a semiconductor layer formed on the first insulating layer; an input electrode, at least a portion of which formed on the semiconductor layer; an output electrode, at least a portion of which formed on the semiconductor layer; and a second insulating layer formed on the input and output electrodes, wherein a thickness ratio of the semiconductor layer to the first insulating layer ranges from 0.3 to 1.5.