Abstract:
A base station for an Internet protocol (IP) wireless access network receives an initial attach request from a user device. Based on the initial attach request, a policy and charging rules function (PCRF) device provides to the base station, a subscriber bearer policy that includes a particular quality-of-service control indicator (QCI) value, an uplink data rate limit, and a downlink data rate limit. The base station calculates an uplink bandwidth allocation, based on the QCI value and the uplink data rate limit, that is proportionate to the total maximum data rate of all uplink traffic with the same QCI value. The base station also calculates a downlink bandwidth allocation, based on the QCI value and the downlink data rate limit, that is proportionate to the total maximum data rate of all downlink traffic with the same QCI value.
Abstract:
A system is configured to store user preferences relating to selection of a network, from a group of networks, via which to establish a connection, where the user preferences includes information for selecting the network based on rates and information for selecting the network based on signal strength or quality levels; receive, from a server device that communicates with the group of networks, a set of rates associated with use of the group of networks; detect signals transmitted by the group of networks; determine, for the group of networks, signal strength or quality levels associated with the signals transmitted by the group of networks; select a particular network, of the group of networks, based on the user preferences, the set of rates, and the signal strength or quality levels; and establish a connection via the particular network.
Abstract:
A device classifies access or control channel signals into a first class or a second class, initializes a dormancy timer associated with the device, and sets the dormancy timer to a default value. The device also sets a signal target utilization threshold, receives actual signals via the access or control channel, and identifies, when a number of the actual signals exceeds the signal target utilization threshold, a particular signal, from the actual signals, as belonging to the first class or the second class. The device further increases the default value of the dormancy timer when the particular signal belongs to the first class, and decreases the default value of the dormancy timer when the particular signal belongs to the second class.
Abstract:
A device receives, from a user device, a request to access a network, determines whether to accept or deny the request to access the network, and monitors traffic provided to or from the user device via the network. The device also determines a traffic pattern for the user device based on the traffic, classifies the traffic as one of high throughput traffic, low packet data size traffic, or high frequency packet interval traffic, and applies different network resource control mechanisms to different classifications of the traffic.
Abstract:
A system is configured to store user preferences relating to selection of a network, from a group of networks, via which to establish a connection, where the user preferences includes information for selecting the network based on rates and information for selecting the network based on signal strength or quality levels; receive, from a server device that communicates with the group of networks, a set of rates associated with use of the group of networks; detect signals transmitted by the group of networks; determine, for the group of networks, signal strength or quality levels associated with the signals transmitted by the group of networks; select a particular network, of the group of networks, based on the user preferences, the set of rates, and the signal strength or quality levels; and establish a connection via the particular network.
Abstract:
A device establishes a first transmission control protocol (TCP) connection with a client device associated with a wireless network, and establishes a second TCP connection with a server device associated with the wireless network. The device also provides a first TCP window size to the client device via the first TCP connection, and provides a second TCP window size to the server device via the second TCP connection, where the first TCP window size is different than the second TCP window size.
Abstract:
A network device may receive, via a network, a request for electronic program guide content, from a user device connected to the network, and monitor, a network condition (e.g., network congestion, user device location, etc.) corresponding to the network. The network device may determine, based on the network condition, whether to provide the electronic program guide content using a first radio frequency bandwidth corresponding to the network or a second radio frequency bandwidth corresponding to the network. The user device may communicate, via the network, the electronic program guide content using the first radio frequency bandwidth or the second radio frequency bandwidth. The first radio frequency bandwidth may correspond to unicast, multicast, or broadcast services, and the second radio frequency bandwidth may correspond to a different one of unicast, multicast, or broadcast services.
Abstract:
A device receives load information associated with one or more mobile gateways or server devices provided in cloud networks, and receives functionality information associated with the one or more mobile gateways or server devices provided in the cloud networks. The device also receives, from a user equipment, a request for a resource provided in one or more of the cloud networks, and selects one of the cloud networks to serve the request based on the load information and the functionality information. The device provides, to the user equipment, an indication of the selected cloud network, where the user equipment connects to the selected cloud network and receives the resource.
Abstract:
A user device may receive a portion of multicast content and may obtain transmission information associated with the portion of the multicast content. The transmission information may identify parameters or radio conditions under which the portion of the multicast content is being received by the user device. The user device may provide, to a server device, the transmission information, and may receive content that remedies a condition, associated with the portion of the multicast content. The condition may be detected, by the server device, based on the transmission information.
Abstract:
A device is configured to receive a request, from a user device, to connect to a network using a first frequency band. The device is configured to determine that the first frequency band cannot accommodate the user device. The device is configured to determine that the user device can connect to the network using a second frequency band, and connect the user device to the network using the second frequency band rather than the first frequency band.