Abstract:
A device receives, from a user device, a request to access a network, determines whether to accept or deny the request to access the network, and monitors traffic provided to or from the user device via the network. The device also determines a traffic pattern for the user device based on the traffic, classifies the traffic as one of high throughput traffic, low packet data size traffic, or high frequency packet interval traffic, and applies different network resource control mechanisms to different classifications of the traffic.
Abstract:
A device classifies access or control channel signals into a first class or a second class, initializes a dormancy timer associated with the device, and sets the dormancy timer to a default value. The device also sets a signal target utilization threshold, receives actual signals via the access or control channel, and identifies, when a number of the actual signals exceeds the signal target utilization threshold, a particular signal, from the actual signals, as belonging to the first class or the second class. The device further increases the default value of the dormancy timer when the particular signal belongs to the first class, and decreases the default value of the dormancy timer when the particular signal belongs to the second class.
Abstract:
A device, provided at a network edge, receives a radio frequency signal from a user equipment, and converts the radio frequency signal into an electrical signal. The device also receives, from a network controller, at least one of control information, schedule information, or congestion management information. The device performs baseband signal processing on the electrical signal, based on at least one of the control information, the schedule information, or the congestion management information, to create a modified signal. The device provides the modified signal to the network controller.
Abstract:
A device receives a priority configuration for a subscriber associated with a user device, and monitors resource utilization information associated with an Internet protocol (IP) wireless access network of the user device. The device also detects an initial attach request of the user device to the IP wireless access network, and determines whether to accept or deny the initial attach request based on the subscriber priority configuration and the resource utilization information. The device further provides, to the user device and when the initial attach request is denied, a time for the user device to attempt a re-attach to the IP wireless access network, and permits, when the initial attach request is accepted, the user device to access the IP wireless access network.
Abstract:
A device establishes a first transmission control protocol (TCP) connection with a client device associated with a wireless network, and establishes a second TCP connection with a server device associated with the wireless network. The device also provides a first TCP window size to the client device via the first TCP connection, and provides a second TCP window size to the server device via the second TCP connection, where the first TCP window size is different than the second TCP window size.
Abstract:
A first device is configured to receive an instruction from a second device, identify network demand associated with the instruction, identify a third device associated with the instruction, send a first load query to the third device, and receive a first load response from the third device. The first load response may identify network capacity associated with the third device and may indicate that the third device is under-loaded, overloaded, or substantially overloaded. The first device is further configured to send a first portion of data, associated with the instruction from the second device, to the third device based on the network capacity indicating that the third device is under-loaded, and send a second portion of data, associated with the instruction from the second device, to a fourth device based on the network capacity indicating that the third device is under-loaded.
Abstract:
An indoor broadband device receives, from a user device, a first request for content; determines a quality of service (QoS) level at which the content is to be provided to the user device; provides a second request for the content, at the determined QoS level, to a wireless access network, the wireless access network connecting to a network that provides broadband services; receives, based on the second request, the content, at the determined QoS level, from the wireless access network; processes the content in a manner that conforms to the QoS level and in a format that is supported by the user device; and provides the content to the user device.
Abstract:
A gateway device, provided in a customer premises, receives a call from a user device, and detects dialed information associated with the call. The gateway device identifies the call as an emergency call based on the dialed information, and terminates all other calls communicated by the gateway device except for the emergency call. The gateway device notifies an outdoor broadband unit, associated with the customer premises, about the emergency call.
Abstract:
A device receives, from a user device and via a first device, a first request for content, and determines whether the content is stored in memory. The device identifies first other requests for the content, received via the first device over a time period, and second other requests for the content, received via a second device over the time period, when the content is stored in the memory. The device identifies a first quantity of the first other requests and a second quantity of the second other requests, and determines whether the first quantity or the second quantity is greater than a threshold. The device transmits the content, to the user device and via the first device, when the first quantity is not greater than the threshold, and transmits, to the second device, an instruction to store the content when the second quantity is greater than the threshold.
Abstract:
A first memory device receives session information associated with a session between a first network device and a user device. The first memory device outputs the session information associated with the session information. A second memory device receives the session information, associated with the session, from the first memory device. The second memory device receives a communication from the first memory device that the first network device is not functioning. The second memory device sends session information to a second network device, based on receiving the communication from the first network device that the first network device is not functioning, the second network device taking over the session from the first network device.