Abstract:
A method of controlling a double clutch transmission of a vehicle to conduct a series of downshifting operations from a preceding gear to a subsequent gear via a current gear in response to deceleration of the vehicle, may include maintaining a clutch which has been in an engaged state at the preceding gear, in the engaged state until after an order to shift to the subsequent gear may be generated, when shifting from the preceding gear to the current gear, releasing the clutch after the order to shift to the subsequent gear may be generated, and engaging a shift gear of the subsequent gear after the releasing of the clutch.
Abstract:
Provided are a method and apparatus for transceiving an asymmetric point-to-point moving signal and securing an uplink channel using a horizontal blanking interval (HBI) in which a video signal transceiving apparatus can combine a plurality of HBIs and a plurality of active lines (ALs) into a single section, and when auxiliary data exists in a corresponding HBI, can change an order of the HBI to the last and transmit map information including arrangement information to a video signal display apparatus, and the video signal display apparatus can receive the map information and analyze the received map information to thereby acquire an uplink channel using HBI excluding auxiliary data and transmit control signal data via the acquired uplink channel.
Abstract:
Provided are a system and method for allocating a specific job or application to a specific slave core by using an inter-core-communication (ICC) channel and executing the job or application in a multicore system environment including the master core and a plurality of slave cores. The method of a master core, includes: initializing message transmission times; generating an event for processing a instruction received from an application program and generating a channel event message from the event; checking a process for transmitting the generated channel event message, and if a channel event message queue corresponding to an event transmitting request is not “FULL” of a previously-stored channel event message, transmitting the channel event message to a specific slave core to request for storing the channel event message; and returning a response of processing status to the request for storing the channel event message to the application program.
Abstract:
The present invention provides an apparatus and method for controlling motor position and creep of an electric vehicle, in which when a running vehicle is stopped, motor position control for maintaining the vehicle in the stopped position even when a brake pedal is released is performed, and then creep torque control is performed such that the vehicle is prevented from rolling backwards and suddenly starting when the vehicle is restarted after a stop on a slope.
Abstract:
A thin film transistor including a lightly doped drain (LDD) region or offset region, wherein the thin film transistor is formed so that primary crystal grain boundaries of a polysilicon substrate are not positioned in the LDD or offset region.
Abstract:
A condensed-cyclic compound represented by Formula 1 below, an organic light-emitting device including the same, and a flat panel display apparatus including the organic light-emitting device: wherein, X, Y, A1, A2, L1, L2, L3, Ar1, R1, R2, R3, R4, R5, R6, a, b, c, d, e, f, and g are described in the detailed description of the invention. The organic light-emitting device including an organic layer including the compound above has low driving voltage, high emission efficiency, and long lifetime.
Abstract:
The present invention relates to an automatic transmission for a bicycle, including: a front sprocket unit coupled to pedals; a rear sprocket unit mounted to a rear wheel; and a drive chain, extremities of which are wound around one sprocket of the front sprocket unit and around one sprocket of the rear sprocket unit, respectively, whereby the torque and speed of the bicycle can be changed in accordance with the combination of the diameters of the sprockets. The front sprocket unit receives a rotating force, and rotates in a direction that propels a bicycle body having pedals forward, but does not receive a rotating force in a direction opposite the rotating direction. The automatic transmission of the present invention can automatically perform a gear-shifting operation without forcing a rider to work the pedals while riding, yet changing the torque and speed of the bicycle.
Abstract:
An apparatus for driving a loadable device component, the apparatus including: the loadable device component providing an application with a loading mechanism that is classified according to a load type property; a core framework module component defining a kind of the load type property; at least one eXtensible Markup Language (XML) data component containing configuration information and generation information of the loadable device component; and a device manager component driving a corresponding loadable device component after parsing the XML data component.
Abstract:
Methods and apparatus are provided that provides an external storage space of an application executed in the terminal. Registration information of a user is received through the application via an application registration request of the user. A registration request message is transmitted to a server preset for the application. The registration request message requests allocation of a storage space for the user in the server according to the registration information. The storage space corresponds to the application. A registration completion message is received from the server. The user is informed of completion of an application registration through the application, when the registration completion message is received from the server.
Abstract:
An operation method of a memory system including a memory and a memory controller includes transmitting defective-cell address information to the memory controller from the memory at an initial operation of the memory, wherein the defective-cell address information includes an address of a defective cell of the memory, and accessing, by the memory controller, an area of the memory excluding an area indicated by the defective-cell address information inside the memory.