Abstract:
An x-ray diffraction imaging device includes at least one x-ray detector and at least one scatter collimator positioned upstream of the at least one x-ray detector. The at least one collimator includes a plurality of successive plates. Each of the plurality of plates defines a plurality of rectangular holes. The plurality of successive plates are arranged such that the plurality of rectangular holes define a plurality of quadrilateral passages extending through the at least one scatter collimator. Each of the plurality of quadrilateral passages is configured to increase a rate of detection of first x-rays that define an x-ray transit path enclosed within a single such quadrilateral passage. Also, the plurality of quadrilateral passages is configured to decrease a rate of detection of second x-rays that define an x-ray transit path that intersects more than one such quadrilateral passage.
Abstract:
An x-ray diffraction imaging device includes at least one x-ray detector and at least one scatter collimator positioned upstream of the at least one x-ray detector. The at least one collimator includes a plurality of successive plates. Each of the plurality of plates defines a plurality of rectangular holes. The plurality of successive plates are arranged such that the plurality of rectangular holes define a plurality of quadrilateral passages extending through the at least one scatter collimator. Each of the plurality of quadrilateral passages is configured to increase a rate of detection of first x-rays that define an x-ray transit path enclosed within a single such quadrilateral passage. Also, the plurality of quadrilateral passages is configured to decrease a rate of detection of second x-rays that define an x-ray transit path that intersects more than one such quadrilateral passage.
Abstract:
A method for calibrating a detection system including a multi-focus X-ray source includes performing a scan of a calibration material using the detection system to acquire scan data, determining a diffraction profile of the calibration material using the scan data, deriving an actual scatter angle using the determined diffraction profile, deriving an offset angle using the determined actual scatter angle, storing the derived offset angle, and generating a table including the stored offset angle.
Abstract:
A method to account for cross-talk among a plurality of coherent scatter detectors of a multi-detector inverse fan beam x-ray diffraction imaging (MD-IFB XDI) system. The MD-IFB XDI system includes a multi-focus x-ray source (MFXS) that emits radiation sequentially from a plurality of focus points denoted by F1, F2, . . . Fn with a running index i. The method includes measuring a diffraction profile Xk for each coherent scatter detector Dk of the plurality of coherent scatter detectors. The diffraction profile includes a spectrum of a number of photons measured in a plurality of corresponding coherent scatter detectors. Each coherent scatter detector Dk is corrected to remove scatter from a plurality of primary beams directed to remaining coherent scatter detectors of the plurality of coherent scatter detectors.
Abstract:
Systems for improving a spatial resolution of an image are described. One of the systems includes an X-ray source configured to generate X-rays, a transmission detector configured to detect the X-rays to output a plurality of electrical signals, and a plate configured to improve the spatial resolution upon receiving the X-rays. The plate is configured to output a fan-beam upon receiving the X-rays.
Abstract:
A method for determining a type of substance is described. The method includes determining an effective atomic number of the substance based on a measured ratio of numbers of detected x-ray scatter photons in a diffraction profile.
Abstract:
A system and method for scanning objects using a non-translational x-ray diffraction (XRD) system is disclosed. The system includes a scanning area through which an object to be scanned traverses and a distributed x-ray source having a plurality of focal spot locations. The distributed x-ray source is affixed on the scanning area and is configured to emit x-rays towards the object as a series of parallel x-ray beams. A stationary detector arrangement is affixed on another side of the scanning area generally opposite the distributed x-ray source and is configured to measure a coherent scatter spectra of the x-rays after passing through the object. A data acquisition system (DAS) is connected to the detector arrangement and is configured to measure the coherent scatter spectra, which is utilized to generate XRD data and determine a material composition of at least a portion of the object from the XRD data.
Abstract:
The invention relates to a method and a device for determining the distribution of an X-ray fluorescence (XRF) marker (16) in a body volume (14). The body volume (14) is irradiated with a beam of rays (12) from an X-ray source (10) with a first ray component with a quantum energy just above and a second ray component with a quantum energy just below the K-edge of the XRF marker (16). Secondary radiation emitted from the body volume (14) is detected in a location-resolved way by a detector (30). To separate the X-ray fluorescence components in the secondary radiation from background radiation, the body volume is irradiated for a second time with a beam of rays from which the first ray component has been substantially removed by a filter (22) made from the material of the XRF marker.
Abstract:
A system, a processor, and a method for tracking a focus of a beam are described. The method includes determining a plurality of intensities corresponding to a plurality of voltages, and applying a first voltage of the plurality of voltages corresponding to a maximum intensity of the plurality of intensities during a scan.
Abstract:
Systems for improving a spatial resolution of an image are described. One of the systems includes an X-ray source configured to generate X-rays, a transmission detector configured to detect the X-rays to output a plurality of electrical signals, and a plate configured to improve the spatial resolution upon receiving the X-rays. The plate is configured to output a fan-beam upon receiving the X-rays.