Abstract:
A sensor-equipped display device is provided. The sensor-equipped display device includes a display panel comprising a common electrode; a sensor comprising a plurality of detection electrodes extending in a first direction and arranged in a second direction crossing the first direction, each of the detection electrodes including a first electrode and a second electrode which are opposed to the common electrode, are divided and extend in the first direction, each of the first electrode and the second electrode including a gradient in width in the first direction in the detection electrode, the gradient in width of the first electrode and the gradient in width of the second electrode being inclined in opposite directions; and a controller configured to effect switching to either a first mode or a second mode, and to control driving of the common electrode and the detection electrodes, wherein the sensor further comprises a dummy electrode disposed between neighboring detection electrodes.
Abstract:
According to one embodiment, an electronic apparatus, includes a sensor-equipped display device includes a display device and a sensor configured to detect a contact or proximate position, a display driver configured to output an image display signal to the display device and to output a drive signal to the sensor, a detecting circuit configured to generate, based on the information from the sensor, raw data (Raw data) including three-dimensional information of coordinates of a position on the display device and a physical quantity at the coordinates, and an application processor configured to discriminate whether a part of the region in the display area should be further sensed or not, based on the raw data, and if the part of the region is further sensed, to output the range of the display device to be further sensed and the timing of driving the sensor to the display driver.
Abstract:
According to one embodiment, a sensor includes a first control line, a first signal line, a first detection switch, a common electrode, a first detection electrode, a first circuit and a second circuit. The common electrode is located above the first control line, the first signal line and the first detection switch, opposed to the first control line, the first signal line and the first detection switch. The first detection electrode is located above the common electrode. The first circuit and the second circuit are located under the common electrode, and are opposed to the common electrode.
Abstract:
A display device is configured that the common electrode wiring layer is divided in a source wiring layer direction, the metal wiring layer is disposed above the source wiring layer at a position in contact with the upper part of the common electrode wiring layer, and the metal wiring layer is not disposed at a position where the common electrode wiring layer is divided. Alternatively, the metal wiring layer is not disposed at a position between the same colors as those at the division position of the common electrode wiring layer.
Abstract:
According to an aspect, a display device with a touch detection function includes a plurality of drive electrodes that face a plurality of pixel electrodes in an orthogonal direction to the surface of the substrate, and extend in a direction parallel to the direction in which a plurality of signal lines extend. The display device with a touch detection function also includes a scan driving unit that applies a touch drive signal to a signal line that faces, in an overlapping manner in the orthogonal direction, a drive electrode to which the touch drive signal is applied.
Abstract:
A liquid crystal display device includes a liquid crystal element array having liquid crystal display elements arranged in matrix, scanning lines arranged in each row of the liquid crystal element array and supplying a scanning signal to the liquid crystal display elements in a corresponding row, signal lines arranged in each column of the liquid crystal element array and supplying an image signal to the liquid crystal display elements in a corresponding column, drive electrodes arranged in the column of the liquid crystal element array and to which a drive signal to detect a touch is supplied, a signal line drive circuit arranged along one side of the liquid crystal element array parallel to the row of the liquid crystal element array and forming the image signal, and a first electrode drive circuit arranged along the other side of the liquid crystal element array and forming the drive signal.
Abstract:
A liquid crystal display device includes: a liquid crystal element array including liquid crystal display elements arranged in a matrix form; scan lines arranged in each row of the liquid crystal element array and configured to supply scan signals to the liquid crystal display elements arranged in a corresponding row; signal lines arranged in each column of the liquid crystal element array and configured to supply image signals to the liquid crystal display elements arranged in a corresponding column; a plurality of driving electrodes arranged in the liquid crystal element array and supplied with driving signals for detecting an external proximity object; a first voltage line of a first voltage; a second voltage line of a second voltage; and a third voltage line of a third voltage.
Abstract:
According to one embodiment, a first substrate includes a gate line extending in a first direction, a source line extending in a second direction intersecting the first direction, a switching element SW which is connected to the gate line and the source line, and a pixel electrode which is connected to the switching element SW. The first substrate includes a common electrode which is opposed to the pixel electrode, and a detection electrode element Tx necessary for sensing a state of closeness of a conductor brought externally, that extends parallel to the common electrode and is formed of a metallic material. By this structure, power consumption of a drive electrode of an input sensor can be reduced, and improvement of a drive frequency can be obtained.
Abstract:
According to one embodiment, a display device includes first and second substrate units, a display function layer, and a drive element. The first substrate unit includes a first substrate, a display unit, and a control circuit unit. The first substrate has a first surface including a display region and a peripheral region. The display unit is provided in the display region, and includes first lines, second lines, switch elements, pixel electrodes, and third lines. The control circuit unit is provided in the peripheral region, and includes a first circuit unit including a third line connection line, and a third line switch. The second substrate unit includes a second substrate and fourth lines. The display function layer is provided between the first and second substrate units. The drive element is provided on the peripheral region. The first circuit unit is partially disposed between the drive element and the first substrate.
Abstract:
According to one embodiment, the display device includes a display panel and touchsensor, the touchsensor outputs a detected signal from detection electrode. An energy saving control section sets a first period in which the detected signal is to be captured, and a second period which is a period except the first period, and controls, in the first period, at least power supply voltage of an image processing section, a panel control section and the display panel to an off-state or to a low voltage.