Abstract:
An intervertebral spacer has curvate upper and lower rough surfaces that stimulate bone growth and is formed from a porous material that facilitates bone growth thereinto. The spacer has a plurality of smooth linear grooves to facilitate insertion of the spacer into an intervertebral space using a spacer insertion tool that has a scissor-style body. Each of the insertion tool's arm's heads has an inner surface having a pair of smoothed linear protrusions that fit within the linear grooves of the spacer when the heads are closed about the spacer. When the spacer is held, spaces are present between the spacer's rough surfaces and the heads' inner surfaces so that when the protrusions are longitudinally slid from the grooves to leave the spacer in the intervertebral spacer, the rough surfaces are not disturbed.
Abstract:
Strip fasteners and cranial plugs for use in reattaching a skull flap removed during brain surgery and methods of using the same. The strip fasteners are flexible and can be shaped to follow the perimeter contour of the skull flap. The cranial plugs can be used to reattach the skull flap or they can be installed after the skull flap is reattached using the strip fasteners. In some embodiments, the cranial plug(s) and strip fasteners can be installed at the same time. The strip fasteners and cranial plugs are designed to encourage bone growth and healing of the skull flap and they can be used to deliver medication and bone growth enhancement compositions to the surgical site.
Abstract:
An intervertebral spacer has curvate upper and lower rough surfaces that stimulate bone growth and is formed from a porous material that facilitates bone growth thereinto. The spacer has a plurality of smooth linear grooves to facilitate insertion of the spacer into an intervertebral space using a spacer insertion tool that has a scissor-style body. Each of the insertion tool's arm's heads has an inner surface having a pair of smoothed linear protrusions that fit within the linear grooves of the spacer when the heads are closed about the spacer. When the spacer is held, spaces are present between the spacer's rough surfaces and the heads' inner surfaces so that when the protrusions are longitudinally slid from the grooves to leave the spacer in the intervertebral spacer, the rough surfaces are not disturbed.
Abstract:
The invention pertains to adjustable bone plates which comprise one or more sets of first members and second members. The first members and second members are releaseably secured to each other by attachment means and locking means, and two or more set of first members and second members are connected by bridging means. The longitudinal and lateral dimensions of the bone plates may be adjustable.
Abstract:
A bone plate and system is provided. The bone fixation plate conforms to the contour of an irregularly shaped bone and eliminates the need for pre-bending or intraoperative bending of the plate. The bone plate is applied to the bone in a generally flat condition and the process of installing and tightening the bone screws in the prescribed order serves to contour the plate to the plate to the underlying bone while providing sufficient strength to effect bone healing. The geometry of the plate allows the plate to follow the contour of an irregularly shaped bone, preventing prominence and patient palpability and streamlining the surgical procedure.
Abstract:
Craniotomy closures comprising surgical fasteners are described for use in reattaching a skull flap removed from the skull of a patient during brain surgery. Methods of using the same are also described. Surgical strips used in combination with the fasteners are shaped to follow the perimeter contour of the skull flap. The craniotomy closures are designed to encourage bone growth and healing of the skull flap and they can be used to deliver medication and bone growth enhancement materials to the surgical site.
Abstract:
An intervertebral space distraction and implantable device assembly provides sequentially axially wider spacers that are to be sequentially inserted into and removed from an intervertebral space to widen the space until a desired anatomical spacing of the adjacent vertebral bones is restored. The set of spacers includes a porous spacer that is as wide as the spacer that restores the desired anatomical spacing. The porous spacer can therefore be left implanted in the intervertebral space to promote fusion of the adjacent vertebral bones.
Abstract:
An instrument for inserting and removing an intervertebral spacer into and out from an intervertebral space between adjacent vertebral bones, the spacer having a trunk portion having a longitudinal axis and flange portions at each longitudinal end of the trunk, the instrument including: a shaft having a proximal end and a distal end; the proximal end including a handle; and a holding structure provided at the distal end, which holding structure includes an enclosure within which the trunk of the spacer may be selectively introduced and maintained therein, the holding structure having an opening leading to the enclosure and through which opening the trunk of the spacer may be selectively passed to when forced therethrough.
Abstract:
A rod, screw, and staple assembly for use in conjunction with anterior or lateral spinal rod implant apparatus includes a vertebral body screw which has a shaft which is insertable into a vertebral bone, a tapered neck, and a head portion which includes a rod receiving channel and an annular recess. The vertebral body staple includes a flat portion which has a hole through it. The hole has a slotted rim which is downwardly sloped so that it may permit the expansion of the hole when a force is applied to it. The screw is advanced into the hole in the staple until the tapered neck thereof snaps through the hole and the rim seats in the annular recess of the screw. This permits the screw and staple to rotate relative to one another, but not to translate axially relative to one another. The staple also includes several barbs which independently hold the staple to the bone surface to which it is to be affixed. The staple may be inserted into the vertebral bone first, and then the screw is driven into the bone through the hole until the neck snaps through the hole. Alternatively, the screw and staple may first be coupled together, and then jointly driven into the bone. In either case, the rod is then inserted into the rod receiving channel and locked in the channel with a nut or set screw.
Abstract:
A tubular interbody fusion device having flat upper and lower surfaces including multiple parallel ratcheted blade ridges having opposing orientations, concave exterior side walls, an interior axial bore having inwardly directed ratcheted ridges, and a plurality of through holes extending from the upper and lower surfaces into the interior bore, from the sides into the interior bore, and from the upper and lower surfaces through the side walls.