Abstract:
Intervertebral implants for implanting into an intervertebral space are provided. The implants can comprise one or more layers that are operably attached to one another. An implant can comprise a first layer having a first mating surface that mates with a second mating surface of a second layer. The first mating surface and the second mating surface can have features that allow them to complement each other. The implants can include one or more bore holes for receiving a fixation member. The bore holes can be horizontal, vertical or diagonal. In some cases, the bore holes will be blind bore holes.
Abstract:
An orthopedic assembly includes a tibial prosthesis that includes a body that defines an anterior side and a posterior side. The body further incudes a recess in the anterior side of the joint prosthesis and a plurality of openings that extend through the body from the anterior side to the posterior side thereof. At least a first and second opening of the openings are positioned at respective lateral and medial sides of a longitudinal axis of the tibial prosthesis. A modular insert is positioned within the recess of the body such that at least a portion of the modular insert is positioned between the openings of the body. The modular insert is formed separately from the tibial prosthesis and has a porous outer surface to promote tissue ingrowth.
Abstract:
A medial lateral retractor system includes a first medial lateral retractor arm, a second medial lateral retractor arm movably coupled thereto, and a base member coupler coupled to one of the first medial lateral retractor arm and the second medial lateral retractor arm. The base member coupler is configured to couple to a base member to which a rostral refractor blade and caudal retractor blade are coupled. The first medial lateral retractor arm is configured to move relative to the second medial lateral retractor arm in a direction substantially perpendicular to a direction of movement of the rostral retractor blade relative to the caudal retractor blade when the base member coupler is coupled to the base member. In implementations the medial lateral retractor system further includes the base member, the rostral retractor blade and the caudal retractor blade, and the base member is coupled to the base member coupler.
Abstract:
Intervertebral implants for implanting into an intervertebral space are provided. The implants can comprise one or more layers that are operably attached to one another. An implant can comprise a first layer having a first mating surface that mates with a second mating surface of a second layer. The first mating surface and the second mating surface can have features that allow them to complement each other. The implants can include one or more bore holes for receiving a fixation member. The bore holes can be horizontal, vertical or diagonal. In some cases, the bore holes will be blind bore holes.
Abstract:
Implants that have anchoring elements, which are vertebral implants that can be used as intervertebral disk replacement in the form of cages for the fusion of vertebral bodies.
Abstract:
An expandable implant device for implantation at a surgical site is provided. The implant device is made of cortical bone and includes a top and bottom piece, both pieces configured to couple with each other. The top piece has superior and inferior surfaces, and at least a tapered leading end configured to distract open an intervertebral disc space so that the top piece can be slidably inserted over the bottom piece until a desired overlap is achieved. A composite interbody bone implant device is also provided including a body skeleton having a non-bone composition, such as a polymer, formed into a shape and including one or more cavities which can be filled with other material, for example, allograft material. A method of placing an expandable device into a disc space is also provided.
Abstract:
A system and method includes a housing dimensioned to be situated between adjacent spinal bones, such as adjacent vertebrae. Screws are provided in one embodiment and are dimensioned or configured to lock against each other to retain the screws and, consequently, the cover in place. Another embodiment illustrates a plurality of plate elements that can be slidably received and locked in the cage. Each of the plate elements are adapted to receive at least one screw and guide the screw at a predetermined angle into a vertebra, thereby securing the cage in an inter-vertebral space.
Abstract:
An implant stabilizes two adjacent bones of a joint, while enabling a natural kinematic relative movement of the bones. Support components are connected to each bone of the joint, and a flexible core is interposed between them. The core and at least one of the support components are provided with a smooth sliding surface upon which the core and support component may slide relative to each other, enabling a corresponding movement of the bones. The surfaces may have a mating curvature, to mimic a natural movement of the joint. The core is resilient, and may bend or compress, enabling the bones to move towards each other, and or to bend relative to each other.
Abstract:
An implant stabilizes two adjacent bones of a joint, while enabling a natural kinematic relative movement of the bones. Support components are connected to each bone of the joint, and a flexible core is interposed between them. The core and at least one of the support components are provided with a smooth sliding surface upon which the core and support component may slide relative to each other, enabling a corresponding movement of the bones. The surfaces may have a mating curvature, to mimic a natural movement of the joint. The core is resilient, and may bend or compress, enabling the bones to move towards each other, and or to bend relative to each other.