Abstract:
In one embodiment, a passivation level includes a low-k dielectric. The low-k dielectric helps lower the capacitance of a metal line in a last metal level, which may be just below the passivation level. In another embodiment, the metal line is relatively thick. This helps lower the metal line's resistance and resulting RC delay.
Abstract:
The present invention advantageously provides a method for retaining a substantially transparent dielectric above alignment marks during polishing of the dielectric to ensure that the alignment marks are preserved for subsequent processing steps. According to an embodiment, alignment marks are etched into a semiconductor substrate. Thereafter, a pad oxide layer is deposited across the substrate surface, followed by the deposition of a first nitride layer. Isolation trenches which are deeper than the alignment mark trenches are formed spaced distances apart within the substrate. Optical lithography may be used to define the regions of the first nitride layer, the pad oxide layer, and the substrate to be etched. The isolation trenches thus become the only areas of the substrate not covered by the pad oxide layer and the first nitride layer. A substantially transparent dielectric, e.g., oxide, is then deposited across the semiconductor topography to a level spaced above the first nitride layer. In this manner, both the isolation trenches and the alignment mark trenches are filled. The dielectric is then subjected to a polish that removes the dielectric above the isolation trenches to the nitride layer and the dielectric above the alignment mark trenches to a level above the nitride layer. A slurryless fixed abrasive polishing technique may be used to planarize the dielectric. A polysilicon/nitride stack which is deposited across the topography may be patterned using lithography. Light is reflected from the alignment marks to detect their positions so that a reticle can be aligned to the polysilicon/nitride stack during the lithography process.
Abstract:
A nitrogen-rich silicon oxide layer is formed using an apparatus for oxidizing semiconductor substrates having a process zone or chamber fluidically coupled to a torch zone or chamber. Generally, a thin initial silicon oxide layer is formed on the substrate using common wet or dry oxidizing processing conditions. Subsequently, a nitridizing atmosphere is introduced to the semiconductor substrates causing a nitrogen-rich silicon oxide layer to be formed thereon. The nitridizing atmosphere is advantageously generated by an exothermic reaction within the torch zone. Once formed, the nitridizing atmosphere is directed to the process zone through the fluidic coupling. The advantageous exothermic reaction resulting from the introduction of nitrous oxide (N2O) to the torch zone at a temperature sufficiently high to induce such an exothermic reaction, generally between approximately 850 to 950 degrees Celsius. Semiconductor integrated circuits are formed using nitrogen-rich silicon oxide films of the current method.
Abstract:
The present invention advantageously provides a method for using an abrasive surface and a particle-free liquid to polish a dielectric, wherein the dielectric is deposited within an isolation trench and across a polish stop surface such that a recess region of the dielectric is spaced below the polish stop surface. In an embodiment, the dielectric is an isolation oxide, and the polish stop surface belongs to an upper surface of a nitride layer formed above a silicon-based substrate. The surface of the dielectric is positioned laterally adjacent the abrasive polishing surface such that the particle-free liquid is positioned at the interface between the dielectric and the polishing surface. The particle-free liquid is preferably deionized water, and the abrasive polishing surface is preferably a polymeric matrix entrained with particles composed of, e.g., ceria. A force configured perpendicular to the backside of the substrate is applied to the polishing surface to force the dielectric surface against the polishing surface while the polishing surface is being rotated relative to the dielectric. As a result, elevationally raised regions of the dielectric are polished to the recessed region of the dielectric, planarizing the dielectric surface. The polish rate of the dielectric is substantially greater than that of the polish stop surface, and thus the polishing stop layer remains intact above the substrate. The polish rate of the elevationally raised regions of the dielectric is also greater than that of the recess region of the dielectric.
Abstract:
A method of encapsulating a dielectric. According to the method of the present invention, a disposable post is formed over a portion of a substrate. Next, a first dielectric layer is formed over the substrate and the disposable post. A second dielectric layer is then formed over the first dielectric layer. Next, a third dielectric layer is formed over the second dielectric layer. A portion of the third dielectric layer is then removed so as to reveal the disposable post. The disposable post is then removed to form an opening.