Abstract:
Embodiments relate to current sensors and methods. In an embodiment, a current sensor comprises a conductor portion having a first portion and a second portion; at least three slots formed in the conductor portion between the first and second portions, each of the at least three slots having a length and at least one tip portion; at least two bridge portions each having a width separating two of the at least three slots and a length coupling the first and second portions; a first contact region disposed relative to the first portion and a second contact region disposed relative to the second portion; and at least one pair of magnetic sensor elements, a first pair of magnetic sensor elements arranged relative to and spaced apart from a first of the at least two bridge portions.
Abstract:
A semiconductor device including a Hall effect sensor and related method. The Hall effect device includes a substrate having a first conductivity type and an epitaxial layer having a second conductivity type defining a Hall effect portion. A conductive buried layer having the second conductivity type is situated between the epitaxial layer and the substrate. First and second output terminals and first and second voltage terminals are provided, with the second voltage terminal being coupled to the conductive buried layer.
Abstract:
In an embodiment of the present invention, a method for sensing a body is disclosed. The method includes measuring an impedance of a body occupying a seat over a plurality of frequencies and comparing the measured impedance of the body with a predefined body model. The method also includes determining whether the predefined body model corresponds to the measured impedance of the body.
Abstract:
A system including a spinning current Hall sensor and a chopping circuit. The spinning current Hall sensor is configured to provide input signals and the chopping circuit is configured to receive the input signals. Spinning phases of the spinning current Hall sensor are lengthened in residual offset adjustment phases to obtain signals that correspond to the residual offset voltages of the spinning phases.
Abstract:
A circuit configuration for processing a signal of a sensor includes an amplifier for amplifying the signal of the sensor. This signal has switch-over points between different signal states. The circuit configuration is constructed in such a manner that the amplifier and the sensor operate continuously in a chopper mode. Furthermore, a control loop is provided for determining offset components in the signal of the sensor and for removing the offset components from the signal of the sensor.
Abstract:
A compensation signal, which derives the mechanical stress, which acts on an integrated semiconductor circuit, from two partial compensation signals, which are generated by semiconductor elements with different stress characteristics, can be determined in more detail when the temperature dependence of a ratio of the partial compensation signals is also considered, wherein particularly a deviation of the ratio of the partial compensation signal to an ideal ratio is considered. Thereby, the rise in accuracy of the stress determination results from determining a deviation of the partial compensation signals, on which the stress determination is based, from a nominal behavior in a stress-free state, so that the deviation of the nominal behavior, which can be based, for example, on a variation of the process parameters in a production process of a semiconductor circuit, can also be considered, in addition to the known temperature behavior.
Abstract:
The invention relates to a circuit arrangement for production of a reset signal after a supply voltage (Vdd) has fallen and risen again, which circuit arrangement has two cross-coupled inverters (INV1, INV2) and an initialization circuit (S) which is connected to the input of one of the inverters (INV2), in which case the outputs of the inverters (INV1, INV2) are capacitively connected asymmetrically, andlor in which case the inverters (INV1, INV2) have different transfer voltages.
Abstract:
The inventive device for evaluating the sensor signal includes the provider for providing the sensor signal, the processor for processing the sensor signal and for providing an information signal comprising information regarding the amplitude course of the sensor signal and means for comparing the sensor signal to a first and a second comparison value, wherein the first and/or the second comparison value are adjustable based on the information signal such that a difference between the first and the second comparison value comprises a non-linear relation to the amplitude course of the sensor signal.
Abstract:
A compensation signal, which derives the mechanical stress, which acts on an integrated semiconductor circuit, from two partial compensation signals, which are generated by semiconductor elements with different stress characteristics, can be determined in more detail when the temperature dependence of a ratio of the partial compensation signals is also considered, wherein particularly a deviation of the ratio of the partial compensation signal to an ideal ratio is considered. Thereby, the rise in accuracy of the stress determination results from determining a deviation of the partial compensation signals, on which the stress determination is based, from a nominal behavior in a stress-free state, so that the deviation of the nominal behavior, which can be based, for example, on a variation of the process parameters in a production process of a semiconductor circuit, can also be considered, in addition to the known temperature behavior.
Abstract:
A method for compensation of dynamic error signals of a chopped Hall sensor that comprises at least one Hall sensor element comprising a plurality of terminal pairs for impressing an excitation current through the Hall sensor element and for taking a Hall voltage. The terminal pairs for impressing the excitation current and for taking the Hall voltage are switched in a first and/or second rotational sense. In order to compensate dynamic error signals caused by the switching, the Hall voltages taken at the terminal pairs when switching in the first rotational sense are supplied to a summation and/or averaging analysis unit together with the Hall voltages taken at the terminal pairs when switching in the second rotational sense.