Abstract:
A user equipment may identify one or more trigger factors associated with an assistance mode. The assistance mode may include a second radio associated with a second radio access technology (RAT) assisting a first radio associated with a first RAT. The UE may then measure a frequency offset between a first clock of the first radio and a second clock of the second radio based at least in part on the one or more trigger factors. The first clock may be associated with a first oscillator crystal, and the second clock may be associated with a second oscillator crystal. The UE may then store the frequency offset for use by the first radio and the second radio in the assistance mode.
Abstract:
An apparatus for wireless communication obtains a first metric of a cell based on signals received by a WWAN radio tuned to a common frequency, and a second metric of the cell based on signals received by a WLAN radio tuned to the common frequency. The apparatus determines a calibration factor based on the first and second metrics, and performs cell search and cell measurement based on the calibration factor and signals received by the WLAN radio tuned to a target frequency. The common frequency may be a serving frequency of the WWAN, in which case the first and second metrics are one of frequency or power metrics and the calibration factor is one of a frequency offset and a power offset. The common frequency may also be a target frequency for inter-frequency measurements of the WWAN, in which case the calibration factor is based primarily on power measurements.
Abstract:
A method of coordinating a small cell with a plurality of small cells includes estimating backhaul bandwidth and backhaul bandwidth utilization of the small cell; estimating aggregate bandwidth utilization for the small cell and the plurality of small cells based on the estimated backhaul bandwidth utilization for each of the small cells; selecting the small cell as a cluster head for a cluster of the small cells based on the estimated aggregate backhaul bandwidth utilization, the cluster including at least some of the small cells; and communicating, via the cluster head, information between a network entity and the small cells of the cluster.
Abstract:
A method of managing uplink interference at a base station includes: detecting uplink interference caused by one or more inter-cell user equipments to an uplink channel of a base station, the one or more inter-cell user equipments associated with a neighboring base station; receiving, at the base station, assistance information from the neighboring base station, the assistance information comprising a parameter list of ongoing transmissions by the one or more user equipments associated with the neighboring base station; and performing uplink interference cancellation, at the base station, on at least a portion of a received signal based on the assistance information to generate a resulting signal.
Abstract:
Wireless communications systems and methods related to synchronization signal (SS) transmission coordination among base stations (BSs) and restricted SS measurements at user equipments (UEs) are provided. A first BS transmits a first SS burst in a first SS transmission period of a plurality of SS transmission periods. The first SS transmission period is designated to the first BS. A second SS transmission period of the plurality of SS transmission periods is designated to a second BS. The first SS transmission period and the second SS transmission period are different. The first BS receives, from a UE, a first signal in synchronization with the first SS burst. The first signal includes a SS measurement of the first SS burst.
Abstract:
Certain aspects of the present disclosure generally relate to wireless communication. In some aspects, a UE may measure a first reference signal, associated with a frequency band of a long term evolution (LTE) system, and a second reference signal associated with a frequency band of a new radio (NR) system. The frequency band of the NR system may overlap the frequency band of the LTE system. The UE may determine first channel state feedback, associated with the frequency band of the LTE system, and second channel state feedback, associated with the frequency band of the NR system, based at least in part on the first reference signal and the second reference signal, respectively. The UE may report the first channel state feedback or the second channel state feedback in uplink control information (UCI). Other aspects are provided.
Abstract:
This disclosure provides systems, methods, and apparatuses for a beam-based channel access countdown procedure. In one aspect, a channel sensing beam may be permitted to include one or more transmit beams and, thus, may differ from a transmit beam that is to be used for a transmission. As such, defining a manner in which a channel access countdown procedure is performed is desirable. Some aspects described herein provide techniques and apparatus for a beam-based channel access countdown procedure. In some aspects, the systems, methods, and apparatuses described herein provide a beam-based channel access countdown procedure that allows a single channel sensing beam, including multiple transmit beams, to be utilized in association with determining channel availability for the multiple transmit beams, thereby improving performance of beam-based directional transmissions.
Abstract:
Methods, systems, and devices for wireless communication are described. A base station may configure a first sub-band and a second sub-band of a system bandwidth for communication with a user equipment (UE). The base station may determine a spatial quasi co-location (QCL) relationship between the first sub-band and the second sub-band and may transmit signaling to the UE that indicates the determined spatial QCL relationship. Upon receiving the signaling, the UE may derive, based on the indicated spatial QCL relationship, spatial parameters (e.g., beam width, pointing angle, etc.) for communication with the base station via the second sub-band. The spatial parameters may be derived based on spatial parameters used for reception of a downlink transmission from the base station via the first sub-band. Subsequently, the UE may communicate with the base station via the second sub-band using the derived spatial parameters.
Abstract:
Aspects herein describe transmitting reference signals in wireless communications. An indication of resources over which to transmit an uplink reference signal can be received from an access point, where the resources are at least partially used by another device to transmit a downlink reference signal or a second uplink reference signal. The uplink reference signal can be transmitted over the resources.
Abstract:
Wireless communications systems and methods related to operating in a network deployed in a downlink (DL) unlicensed band and an uplink (UL) licensed band are provided. A first wireless communication device communicates, with a second wireless communication device, a first downlink communication signal in a downlink unlicensed band of a network. The first wireless communication device communicates, with the second wireless communication device, a second downlink communication signal in an uplink licensed band of the network. The second downlink communication signal includes at least one of a synchronization signal block (SSB), system information, a random access response, a contention resolution message, paging information, a downlink feedback signal, or low-latency data.