Method and system for left ventricle detection in 2D magnetic resonance images
    112.
    发明授权
    Method and system for left ventricle detection in 2D magnetic resonance images 有权
    二维磁共振图像左心室检测方法与系统

    公开(公告)号:US08406496B2

    公开(公告)日:2013-03-26

    申请号:US12504047

    申请日:2009-07-16

    IPC分类号: G06K9/00

    CPC分类号: G06K9/6202 G06K2209/051

    摘要: A method and system for left ventricle (LV) detection in 2D magnetic resonance imaging (MRI) images is disclosed. In order to detect the LV in a 2D MRI image, a plurality of LV candidates are detected, for example using marginal space learning (MSL) based detection. Candidates for distinctive anatomic landmarks associated with the LV are then detected in the 2D MRI image. In particular, apex candidates and base candidates are detected in the 2D MRI image. One of the LV candidates is selected as a final LV detection result using component-based voting based on the detected LV candidates, apex candidates, and base candidates.

    摘要翻译: 公开了一种用于2D磁共振成像(MRI)图像中左心室(LV)检测的方法和系统。 为了检测2D MRI图像中的LV,例如使用基于边缘空间学习(MSL)的检测来检测多个LV候选。 然后在2D MRI图像中检测与LV相关的特征性解剖学标记的候选者。 特别地,在2D MRI图像中检测到顶点候选和基础候选。 使用基于检测到的LV候选,顶点候选和基础候选的基于组件的投票,将LV候选中的一个选择为最终的LV检测结果。

    Method and System for Comprehensive Patient-Specific Modeling of the Heart
    113.
    发明申请
    Method and System for Comprehensive Patient-Specific Modeling of the Heart 有权
    心脏综合患者特异性建模方法与系统

    公开(公告)号:US20120022843A1

    公开(公告)日:2012-01-26

    申请号:US13091076

    申请日:2011-04-20

    IPC分类号: G06G7/60 G06G7/57

    摘要: A method and system for patient-specific modeling of the whole heart anatomy, dynamics, hemodynamics, and fluid structure interaction from 4D medical image data is disclosed. The anatomy and dynamics of the heart are determined by estimating patient-specific parameters of a physiological model of the heart from the 4D medical image data for a patient. The patient-specific anatomy and dynamics are used as input to a 3D Navier-Stokes solver that derives realistic hemodynamics, constrained by the local anatomy, along the entire heart cycle. Fluid structure interactions are determined iteratively over the heart cycle by simulating the blood flow at a given time step and calculating the deformation of the heart structure based on the simulated blood flow, such that the deformation of the heart structure is used in the simulation of the blood flow at the next time step. The comprehensive patient-specific model of the heart representing anatomy, dynamics, hemodynamics, and fluid structure interaction can be used for non-invasive assessment and diagnosis of the heart, as well as virtual therapy planning and cardiovascular disease management. Parameters of the comprehensive patient-specific model are changed or perturbed to simulate various conditions or treatment options, and then the patient specific model is recalculated to predict the effect of the conditions or treatment options.

    摘要翻译: 公开了一种用于针对4D医学图像数据的整个心脏解剖结构,动力学,血流动力学和流体结构相互作用的患者特异性建模的方法和系统。 通过从患者的4D医学图像数据估计心脏的生理模型的患者特异性参数来确定心脏的解剖学和动力学。 患者特异性解剖学和动力学被用作3D Navier-Stokes求解器的输入,该解算器在整个心脏周期中导出由局部解剖结构约束的现实血液动力学。 流体结构相互作用是通过在给定的时间步长模拟血液流动而在心脏周期上迭代地确定的,并且基于模拟的血液流量计算心脏结构的变形,使得心脏结构的变形用于模拟 血液流动在下一个时间步。 代表解剖学,动力学,血液动力学和流体结构相互作用的心脏综合患者特异性模型可用于心脏的非侵入性评估和诊断,以及虚拟治疗计划和心血管疾病管理。 全面的患者特异性模型的参数被改变或扰动以模拟各种条件或治疗选择,然后重新计算患者特异性模型以预测条件或治疗选择的影响。

    System and method for detecting and tracking a guidewire in a fluoroscopic image sequence
    117.
    发明授权
    System and method for detecting and tracking a guidewire in a fluoroscopic image sequence 有权
    用于在透视图像序列中检测和跟踪导丝的系统和方法

    公开(公告)号:US07792342B2

    公开(公告)日:2010-09-07

    申请号:US11675678

    申请日:2007-02-16

    IPC分类号: G06K9/00

    摘要: A system and method for populating a database with a set of image sequences of an object is disclosed. The database is used to detect localization of a guidewire in the object. A set of images of anatomical structures is received in which each image is annotated to show a guidewire, catheter, wire tip and stent. For each given image a Probabilistic Boosting Tree (PBT) is used to detect short line segments of constant length in the image. Two segment curves are constructed from the short line segments. A discriminative joint shape and appearance model is used to classify each two segment curve. A shape of an n-segment curve is constructed by concatenating all the two segment curves. A guidewire curve model is identified that includes a start point, end point and the n-segment curve. The guidewire curve model is stored in the database.

    摘要翻译: 公开了一种使用一组对象的图像序列填充数据库的系统和方法。 数据库用于检测对象中导丝的定位。 接收一组解剖结构的图像,其中每个图像被注释以示出导丝,导管,线尖和支架。 对于每个给定的图像,使用概率增强树(PBT)来检测图像中恒定长度的短线段。 从短线段构建两段曲线。 使用歧视关节形状和外观模型对每个两段曲线进行分类。 通过连接所有两个段曲线构建n段曲线的形状。 识别出导线曲线模型,其包括起始点,终点和n段曲线。 导丝曲线模型存储在数据库中。

    Method and System for Left Ventricle Detection in 2D Magnetic Resonance Images Using Ranking Based Multi-Detector Aggregation
    118.
    发明申请
    Method and System for Left Ventricle Detection in 2D Magnetic Resonance Images Using Ranking Based Multi-Detector Aggregation 有权
    使用基于排序的多检测器聚合的2D磁共振图像中左心室检测的方法和系统

    公开(公告)号:US20100142787A1

    公开(公告)日:2010-06-10

    申请号:US12630061

    申请日:2009-12-03

    IPC分类号: G06K9/62

    摘要: A method and system for left ventricle (LV) detection in 2D magnetic resonance imaging (MRI) images is disclosed. In order to detect the LV in a 2D MRI image, a plurality of LV candidates are detected, for example using marginal space learning (MSL) based detection. Candidates for distinctive anatomic landmarks associated with the LV are then detected in the 2D MRI image. In particular, apex candidates and base candidates are detected in the 2D MRI image. One of the LV candidates is selected as a final LV detection result by ranking the LV candidates based on the LV candidates, the apex candidates, and the base candidates using a trained ranking model.

    摘要翻译: 公开了一种用于2D磁共振成像(MRI)图像中左心室(LV)检测的方法和系统。 为了检测2D MRI图像中的LV,例如使用基于边缘空间学习(MSL)的检测来检测多个LV候选。 然后在2D MRI图像中检测与LV相关的特征性解剖学标记的候选者。 特别地,在2D MRI图像中检测到顶点候选和基础候选。 通过使用训练排名模型,基于LV候选,顶点候选和基础候选对LV候选进行排名,将LV候选者中的一个选择为最终的LV检测结果。