Abstract:
The disclosure describes a process and apparatus for accessing devices on a substrate. The substrate may include only full pin JTAG devices (504), only reduced pin JTAG devices (506), or a mixture of both full pin and reduced pin JTAG devices. The access is accomplished using a single interface (502) between the substrate (408) and a JTAG controller (404). The access interface may be a wired interface or a wireless interface and may be used for JTAG based device testing, debugging, programming, or other type of JTAG based operation.
Abstract:
The disclosure describes a novel method and apparatus for making device TAPs addressable to allow device TAPs to be accessed in a parallel arrangement without the need for having a unique TMS signal for each device TAP in the arrangement. According to the disclosure, device TAPs are addressed by inputting an address on the TDI input of devices on the falling edge of TCK. An address circuit within the device is associated with the device's TAP and responds to the address input to either enable or disable access of the device's TAP.
Abstract:
Functional circuits and cores of circuits are tested on integrated circuits using scan paths. Using parallel scan distributor and collector circuits for these scan paths improves test access of circuits and cores embedded within ICs and reduces the IC's power consumption during scan testing. A controller for the distributor and collector circuits includes a test control register, a test control state machine and a multiplexer. These test circuits can be connected in a hierarchy or in parallel. A conventional test access port or TAP can be modified to work with the disclosed test circuits.
Abstract:
A scan test architecture facilitates low power testing of semiconductor circuits by selectively dividing the serial scan paths into shorter sections. Multiplexers between the sections control connecting the sections into longer or shorted paths. Select and enable signals control the operation of the scan path sections. The output of each scan path passes through a multiplexer to compare circuits on the semiconductor substrate. The compare circuits also receive expected data and mask data. The compare circuits provide a fail flag output from the semiconductor substrate.
Abstract:
An address and command port interface selectively enables JTAG TAP domain operations and Trace domain operations within an IC. The port carries TMS and TDI input and TDO output on a single pin and receives a clock signal on a separate pin. The addressable two pin interface loads and updates instructions and data to the TAP domain within the IC. The instruction or data update operations in multiple ICs occur simultaneously. A process transmits data from an addressed target device to a controller using data frames, each data frame comprising a header bit and data bits. The logic level of the header bit is used to start, continue, and stop the data transmission to the controller. A data and clock signal interface between a controller and multiple target devices provides for each target device to be individually addressed and commanded to perform a JTAG or Trace operation.
Abstract:
The disclosure describes novel methods and apparatuses for controlling a device's TCA circuit when the device exists in a JTAG daisy-chain arrangement with other devices. The methods and apparatuses allow the TCA test pattern set used during device manufacturing to be reused when the device is placed in a JTAG daisy-chain arrangement with other devices, such as in a customers system using the device. Additional embodiments are also provided and described in the disclosure.
Abstract:
An integrated circuit or circuit board includes functional circuitry and a scan path. The scan path includes a test data input lead, a test data output lead, a multiplexer, and scan cells. A dedicated scan cell has a functional data output separate from a test data output. Shared scan cells each have a combined output for functional data and test data. The shared scan cells are coupled in series. The test data input of the first shared scan cell is connected to the test data output of the dedicated scan cell. The combined output of one shared scan cell is coupled to the test data input lead of another shared scan cell. The multiplexer has an input coupled to the test data output, an input connected to the combined output lead of the last shared scan cell in the series, and an output connected in the scan path.
Abstract:
Test circuits located on semiconductor die enable a tester to test a plurality of die/ICs in parallel by inputting both stimulus and response patterns to the plurality of die/ICs. The response patterns from the tester are input to the test circuits along with the output response of the die/IC to be compared. Also disclosed is the use of a response signal encoding scheme whereby the tester transmits response test commands to the test circuits, using a single signal per test circuit, to perform: (1) a compare die/IC output against an expected logic high, (2) a compare die/IC output against an expected logic low, and (3) a mask compare operation. The use of the signal encoding scheme allows functional testing of die and ICs since all response test commands (i.e. 1-3 above) required at each die/IC output can be transmitted to each die/IC output using only a single tester signal connection per die/IC output. In addition to functional testing, scan testing of die and ICs is also possible.
Abstract:
The disclosure describes a novel method and apparatus for providing expected data, mask data, and control signals to scan test architectures within a device using the falling edge of a test/scan clock. The signals are provided on device leads that are also used to provide signals to scan test architectures using the rising edge of the test/scan clock. According to the disclosure, device test leads serve to input different test signals on the rising and falling edge of the test/scan clock which reduces the number of interconnects between a tester and the device under test.
Abstract:
The disclosure describes a novel method and apparatuses for allowing a controller to select and access different types of access ports in a device. The selecting and accessing of the access ports is achieved using only the dedicated TDI, TMS, TCK, and TDO signal terminals of the device. The selecting and accessing of device access ports can be achieved when a single device is connected to the controller, when multiple devices are placed in a daisy-chain arrangement and connected to the controller, or when multiple devices are placed in a addressable parallel arrangement and connected to the controller. Additional embodiments are also provided and described in the disclosure.