摘要:
First and second electrical wires (10), (12) are wrapped helically around a polyprolene core (22). Along a single helical portion (A), a sheath (24) is placed over the spiral wound wires and core. In an open double helix portion (B), the core with spiral wound wires is wrapped into an open helix. At an electrical stimulation portion (C), insulation is removed from the wires such that bare conductors (14), (16) are wrapped spirally around the core. The core with the spiral wrapped conductors is wrapped in an open helix. A plurality of barbs (32) are mechanically connected along the entire length of the exposed electrical conductor surface. The core extends beyond the end of the electrical conductor surface to facilitate insertion into a selected site with a cannula (64).
摘要:
The present disclosure is directed to a method of using an implantable medical device. One embodiment of the present disclosure comprises delivering electrical stimulation proximate nerve tissue of a patient during a transient physiological effect period separated by a recovery period. The transient physiological effect period is when electrical stimulation has an increased level of efficacy and the recovery period is when additional electrical stimulation does not provide a beneficial physiological effect to the patient.
摘要:
An embodiment relates to a method for delivering a unidirectional afferent nerve stimulation treatment. A test neural stimulation is delivered, and a physiologic response to the test neural stimulation is monitored. At least one neural stimulation parameter for the test neural stimulation is adjusted if the test neural stimulation does not elicit a desired physiologic response. If the test neural stimulation does elicit the desired physiologic response, at least one treatment parameter for a unidirectional afferent nerve stimulation is determined using the at least one neural stimulation parameter for the test neural stimulation that provided the desired physiologic response. The unidirectional afferent nerve stimulation is delivered using the at least one treatment parameter.
摘要:
According to one embodiment, the present invention includes an elongate implantable medical lead having a distal portion that is relatively flexible, a proximal portion that is relatively stiff, and a transition portion which has a variable transition stiffness. The transition stiffness varies over the length of the transition portion that generally decreases in a distal direction. The relatively stiff proximal portion of the lead gives the lead steerability while the gradual change in stiffness in the transition portion reduces the likelihood that the lead will prolapse when it is guided into a branch vein. The distal stiffness is less than the proximal stiffness giving the lead a safe end that is unlikely to puncture vascular walls and is able to maneuver around various tortuosities when the lead is implanted into a patient.
摘要:
A lead having a pre-formed biased portion is adapted for implantation with a body vessel and for connection to a signal generator. The lead is constructed and arranged so that when it is implanted, the electrodes are biased toward a vessel wall by the preformed biased portion, which operates to fixate the lead against the vessel wall.
摘要:
An apparatus for outputting heart sounds includes an implantable system and an external system. The implantable system includes a sensor for generating sensed signals representing detected heart sounds, an interface circuit and a control circuit for receiving the sensed signals, generating data representing the heart sounds therefrom, and transmitting the data to the external system via the interface circuit. The external system includes an interface circuit for communicating with the implantable system, and a control circuit for receiving the data representing the heart sounds and for generating control signals that cause an output device to generate outputs representing the sounds. The implantable system may also include a sensor(s) for detecting cardiac electrical signals. In this case, outputs representing the cardiac electrical signals are also output.
摘要:
A lead having a pre-formed biased portion is adapted for implantation with a body vessel and for connection to a signal generator. The lead is constructed and arranged so that when it is implanted, the electrodes are biased toward a vessel wall by the preformed biased portion, which operates to fixate the lead against the vessel wall.
摘要:
One aspect of the present subject matter relates to an implantable medical device. An embodiment of the device comprises a rechargeable power supply adapted to be recharged through an ultrasound signal, a neural stimulator connected to the rechargeable power supply, and a controller connected to the rechargeable power supply. The neural stimulator is adapted to generate a neural stimulation signal for delivery to a neural stimulation target through an electrode. The controller is further connected to the neural stimulator to control the neural stimulator according to a neural stimulation protocol. Other aspects are provided herein.
摘要:
An apparatus for outputting heart sounds includes an implantable system and an external system. The implantable system includes a sensor for generating sensed signals representing detected heart sounds, an interface circuit and a control circuit for receiving the sensed signals, generating data representing the heart sounds therefrom, and transmitting the data to the external system via the interface circuit. The external system includes an interface circuit for communicating with the implantable system, and a control circuit for receiving the data representing the heart sounds and for generating control signals that cause an output device to generate outputs representing the sounds. The implantable system may also include a sensor(s) for detecting cardiac electrical signals. In this case, outputs representing the cardiac electrical signals are also output.
摘要:
One aspect of the present subject matter relates to an implantable medical device. An embodiment of the device comprises a rechargeable power supply adapted to be recharged through an ultrasound signal, a neural stimulator connected to the rechargeable power supply, and a controller connected to the rechargeable power supply. The neural stimulator is adapted to generate a neural stimulation signal for delivery to a neural stimulation target through an electrode. The controller is further connected to the neural stimulator to control the neural stimulator according to a neural stimulation protocol. Other aspects are provided herein.