Abstract:
A base station may establish a wireless connection with a mobile device. The base station may determine an index value for each of a plurality of carriers that may be used for the wireless connection. The index value for a respective carrier may be determined based on a quantity of idle mode devices using the respective carrier in an idle mode. The base station may generate a carrier order that indicates a priority for each of the plurality of frequencies. The carrier order may be generated based on sorting the plurality of carriers based on the index values for the plurality of carriers. The base station may send order information indicating the carrier order to the mobile device via the wireless connection.
Abstract:
Techniques described herein relate to reducing co-channel interference between macrocells and small cells in a heterogeneous network environment. Macrocells and small cells may dynamically select from among multiple interfaces (e.g., an X2 or S1 interface) to communicate FeICIC control communications. In one implementation, the selection may be based on the round trip delay (RTD) time between pairs of nodes. Thus, the macrocells and small cells nodes may dynamically select either the X1 or S1 interface based on whichever of these interfaces has the smallest RTD to the destination radio node.
Abstract:
A selective call blocking function (SCBF) device, included in an internet protocol (IP) multimedia subsystem (IMS), processes a request to establish an IP call on an LTE network, such as a voice over long term evolution (VoLTE) call. The SCBF device identifies a user equipment (UE) associated with the IP call and an associated eNode B (eNB). For example, the SCBF may access a subscriber location memory to determine a location of the UE and an eNB associated with the location. The SCBF determines whether the eNB supports the IP call, and permits the IP call to be established via the IMS when the eNB supports the IP call. When the eNB does not support the IP call, the SCBF blocks the IP call and initiates a non-IP call, such as a 1× call, to the UE to prevent communications interruptions.
Abstract:
User devices may search for cellular networks that provide the best available service, such as Long-Term Evolution (“LTE”) networks. If such a network is unavailable, the user device may connect to a different network, such as a Code Division Multiple Access 2000 1X network. When connected to the 1X network, the user device may not attempt to search for the LTE network unless the user device enters an idle mode, even if the LTE network becomes available while connected to the 1X network. Systems and/or methods, described herein, may “force” the user device into idle mode, while the user device is actively communicating via the 1X network, so that the user device may search for the LTE network. Forcing the user device into idle mode may include interrupting communications, which may include causing traffic, output by network applications of the user device, to not be transmitted from the user device.
Abstract:
A device is configured to send a connection message to a user device while a communication session is being established with the user device. The connection message may indicate a transmission time interval bundling (TTI-B) configuration to be configured by the user device. The device may determine to activate the TTI-B configuration after the communication session is established. The device may send a control message to the user device during the communication session. The control message may instruct the user device to activate the TTI-B configuration configured by the user device. The device may activate the TTI-B configuration for use during the communication session. The device may receive uplink data, from the user device, during the communication session based on activating the TTI-B configuration and sending the control message.
Abstract:
Carrier aggregation may be performed using licensed (e.g., LTE) and unlicensed (e.g., LTE-U) spectrum in which the amount of data associated with users may be separately tracked for the licensed and unlicensed communications. The tracking for the amount of licensed and unlicensed data may be performed at base stations associated with a wireless network. In some implementations, a base station may maintain a number of profiles that each indicate how and/or when carrier aggregation is to be divided or performed.
Abstract:
A device may connect to a base station included in a service provider network. The base station may serve a geographic area where the device is located. The device may receive service information associated with the base station. The service information may correspond to the geographic area served by the base station, and may include an access state associated with a service. The access state may indicate a manner in which the device is permitted to access the service via the base station. The device may provide information associated with the access state to cause the device to access the service in accordance with the access state.
Abstract:
A device is configured to transmit uplink data to a base station using a resource. The device may receive an acknowledgment from the base station based on the uplink data. The acknowledgment may indicate a positive acknowledgment or a negative acknowledgment. The device may decode the acknowledgment as the positive acknowledgment or the negative acknowledgment. The device may receive a control message from the base station indicating resource assignments for user devices. The device may determine the acknowledgement is falsely decoded as the positive acknowledgment or the negative acknowledgment based on the resource assignments. The device may selectively retransmit the uplink data to the base station using the resource based on whether the acknowledgment is falsely decoded as the positive acknowledgment or the negative acknowledgment.
Abstract:
A base station may establish a wireless connection with a mobile device. The base station may determine an index value for each of a plurality of carriers that may be used for the wireless connection. The index value for a respective carrier may be determined based on a quantity of idle mode devices using the respective carrier in an idle mode. The base station may generate a carrier order that indicates a priority for each of the plurality of frequencies. The carrier order may be generated based on sorting the plurality of carriers based on the index values for the plurality of carriers. The base station may send order information indicating the carrier order to the mobile device via the wireless connection.
Abstract:
A method, a device, and a non-transitory storage medium having instructions to receive tune away data from a multimode mobile device and to adjust network processes based on the tune away data including downlink scheduling, uplink scheduling, and handover procedures.