Abstract:
A video encoder is configured to determine a picture size for one or more pictures included in a video sequence. The picture size associated with the video sequence may be a multiple of an aligned coding unit size for the video sequence. In one example, the aligned coding unit size for the video sequence may comprise a minimum coding unit size where the minimum coding unit size is selected from a plurality of smallest coding unit sizes corresponding to different pictures in the video sequence. A video decoder is configured to obtain syntax elements to determine the picture size and the aligned coding unit size for the video sequence. The video decoder decodes the pictures included in the video sequence with the picture size, and stores the decoded pictures in a decoded picture buffer.
Abstract:
A method, apparatus, and service station for providing a location-based transportation information service. The method for providing a location-based traffic information service includes receiving a traffic message indicating a traffic condition, determining a traffic information service station matching the traffic message in terms of location, and dispatching the traffic message to the matched traffic information service station such that the traffic message is broadcasted within the service range of the matched traffic information service station. Corresponding apparatus and traffic information service station are also disclosed. According to embodiments of the present invention, a location-specific real-time traffic information service can be provided.
Abstract:
Aspects of this disclosure relate to, in an example, a method that includes identifying a first block of video data in a first temporal location from a first view, wherein the first block is associated with a first disparity motion vector. The method also includes determining a motion vector predictor for a second motion vector associated with a second block of video data, wherein the motion vector predictor is based on the first disparity motion vector. When the second motion vector comprises a disparity motion vector, the method includes determining the motion vector predictor comprises scaling the first disparity motion vector to generate a scaled motion vector predictor, wherein scaling the first disparity motion vector comprises applying a scaling factor comprising a view distance of the second disparity motion vector divided by a view distance of the first motion vector to the first disparity motion vector.
Abstract:
There is disclosed methods and apparatuses for multi-view video encoding, decoding and display. A depth map is provided for each of the available views. The depth maps of the available views are used to synthesize a target view for rendering an image from the perspective of the target view based on images of the available views.
Abstract:
The example techniques of this disclosure are directed to default construction techniques for the construction of a combined reference picture list, and default mapping techniques for the combined reference picture list. In some examples, a video coder may construct first and second reference picture lists from frame number values, and construct the combined reference picture list from the frame number values of the first and second reference picture lists. In some examples, a video coder may construct first and second reference picture lists from picture order count (POC) values, and construct the combined reference picture list from the POC values of the first and second reference picture lists. In some examples, a video coder may construct a combined reference picture list from received information for the construction, and map the pictures of the combined reference picture list to one of a first or second reference picture list.
Abstract:
Stereoscopic video data encoded according to a full resolution frame-compatible stereoscopic vide coding process. Such stereoscopic video data consists of a right view and a left that are encoded in half resolution versions in an interleaved base layer and an interleaved enhancement layer. When decoded, the right view and left view are filtered according to two sets of filter coefficients, one set for the left view and one set for the right view. The sets of filter coefficients are generated by an encoder by comparing the original left and right views to decoded versions of the left and right views.
Abstract:
The example techniques described in this disclosure provide for an efficient manner to encode or decode a video block of a picture using a single reference picture list. The single reference picture list may include identifiers for reference picture or pictures used to encode or decode the video block. In some examples, a video encoder or decoder may encode or decode a video block that is predicted from two reference pictures using the single reference picture list, and encode or decode a video block that is predicted from one reference picture using the same, single reference picture list.
Abstract:
This disclosure relates to techniques for indicating that a video frame is coded as a generalized P/B (GPB) frame in order to reduce a cost of coding and constructing a second reference picture list in video coding. For a GPB frame, which has identical reference picture lists, signaling and constructing both the first and second reference picture lists may be redundant. The techniques of this disclosure may include coding syntax elements indicating that the video frame is coded as the GPB frame, and coding syntax elements indicating a number of reference pictures and reference picture list construction commands for only a first reference picture list. The techniques also include constructing the first reference picture list based on the syntax elements, and then creating the second reference picture list as a duplicate of the first reference picture list.
Abstract:
In one example, a device for retrieving multimedia data, the device comprising one or more processors configured to analyze information of a manifest file for multimedia content, wherein the information of the manifest file indicates that at least one representation of the multimedia content includes a temporal sub-sequence, determine one or more locations of data for the temporal sub-sequence, and submit one or more requests for the data for the temporal sub-sequence.
Abstract:
This disclosure includes techniques for signaling characteristics of a representation of multimedia content at a representation layer, such as frame packing arrangement information for the representation. In one example, an apparatus for receiving video data includes a processing unit configured to receive information indicative of whether a bitstream includes a packed frame of video data, wherein the packed frame comprises two frames corresponding to different views of a scene for three-dimensional playback, and wherein the information is present in a representation layer external to a codec layer of the bitstream, automatically determine whether the apparatus is capable of decoding and rendering the bitstream based on an analysis of the received information and decoding and rendering capabilities of the device, and retrieve the bitstream when the processing unit determines that the device is capable of decoding and rendering the bitstream.