Abstract:
A mass notification system is disclosed. The system can include a communication network. The system can also include a number of network devices communicably coupled to the communication network, where at least two of the network devices are configured to generate a communication substantially simultaneously. The system can further include a server communicably coupled to the communication network and configured to control the plurality of network devices, where the server instructs the at least two of the plurality of network devices to generate the communication. The system can also include a first client communicably coupled to the communication network and comprising a user interface, where the first client is configured to communicate, via the user interface, with the server and the plurality of network devices.
Abstract:
A light emitting diode (LED) lamp tube for replacing a linear fluorescent lamp that includes an inner tube wall, an outer tube wall, at least one LED array, and at least one waveguide, where the at least one LED array is coupled to an inner surface of the inner tube wall. The at least one waveguide is coupled to the end of the outer tube and is configured to reflect light emitted from the at least one LED array toward a space located between the inner tube wall and the outer tube wall.
Abstract:
A mounting platform for a light board is described herein. The mounting platform can include a fixture coupling portion having at least one fixture receiving feature, where the at least one fixture receiving feature is configured to couple to a light fixture. The housing can also include a light board coupling portion having at least one light board coupling feature, where the at least one light board coupling feature is configured to couple to at least one light board. The housing can further include an intermediate portion coupled to and positioned between the fixture coupling feature and the light board coupling feature, where the intermediate portion forms a first angle with the fixture coupling feature and a second angle with the light board coupling feature.
Abstract:
Control and monitoring of airfield lighting from a control tower and other maintenance/supervisory locations uses double loop self healing fiber optic communications circuits to enhances speed of operation even with large and complex airfield lighting system requirements, and significantly increased reliability and operating lifetime thereof. A plurality of local light control and monitoring groups are used, wherein each group has at least one fiber optic communications concentrator that independently communicates with light controllers within the group and the remote supervisory control and monitoring systems in the control tower and other locations. This allows faster control response of the lamps in each of the airfield light fixtures, and monitoring concentration of operational data within each group. Each of the at least one fiber optic concentrators is optically coupled to double loop self healing fiber optic communications backbone circuits coupled to main and backup computer supervisory control systems for redundancy purposes.
Abstract:
A luminaire can comprise a system that automatically adjusts light output from the luminaire to control light level in an illuminated area. The system can increase light output if the light level in the area falls below a target light level or decrease light output if the light level in the area rises above the target. For example, when the area is illuminated by a combination of sunlight and luminaire light, the light level can be maintained at the target level by gradually decreasing light output as the sunlight contribution increases in the morning and by gradually increasing light output as the sunlight contribution decreases in the evening. The system adjustments can take into consideration whether the light level is offset from the target due to a change in the target or a short-term fluctuation that may be due to a cloud temporarily blocking the sun.
Abstract:
A modular lighting system may include a support structure, a plurality of heat sink modules physically supported by the support structure, and one or more light source modules coupled to the plurality of heat sink modules. The plurality of heat sink modules may be arranged in a modular manner such that the heat sink modules in the modular lighting system is variable, and each heat sink module may be an integral molded structure defining at least one opening or passageway.
Abstract:
A method of communicating a condition in a hazardous location. The method can include determining, using a controller of a first controller communicably coupled to a measuring device, the condition in the hazardous location, and emitting, based on the condition, a first light output from a first light source in the hazardous location. The method can also include receiving, using a second enclosure located in the hazardous location, a visible light communication (VLC) signal from the first light output, and emitting, from a second light source of the second enclosure, a second light output, where the second light output comprises the VLC signal. The method can further include receiving, using a base device, the VLC signal from the second light output, translating the VLC signal into a communication format, and sending the VLC signal in the communication format.
Abstract:
The present disclosure provides techniques for power factor correction on a constant current system without the use of a diode rectifier bridge. In an example embodiment, the present disclosure provides a power factor correction circuit which includes two switching MOSFETs biased in opposite directions which operate during opposite half cycles of the input current. The power factor correction circuit generates an input voltage to match the phase of the input current. The input voltage is generated via charging and draining of an input capacitor by the MOSFETs. The MOSFETs are driven on a duty cycle synchronously associated with the input current wave form.