Abstract:
A catheter assembly includes a catheter body that extends from a distal end to a proximal end. The catheter body includes a delivery lumen, and an actuator lumen, where the actuator lumen extends from a position near or at the distal end to an intermediate portion that does not extend through the proximal end of the catheter body. The catheter body optionally includes an accessory lumen that extends from at or near the distal end and terminates at an intermediate portion that does not extend through the proximal end surface of the catheter body, for example, on a side wall.
Abstract:
A keyless entry system for an automobile is described. The keyless entry system comprises a radio frequency identification (RFID) tag that has been programmed to selectively unlock an automobile when the RFID tag is within a predetermined distance and, optionally, to lock the automobile when the RFID is outside the predetermined distance. An interrogator housed on or within the automobile comprises an actuatable RF signal generator for transmitting an electromagnetic signal and a time-out circuit. Regardless whether the programmed RFID tag is detected, or not, the RF signal generator transmits a first electromagnetic signal having a first limited total continuous transmit time, followed by an interim period of a defined length where the time-out circuit renders the interrogator incapable of transmitting the electromagnetic signal, followed by the RF signal generator transmitting a second electromagnetic signal having a second limited total continuous transmit time.
Abstract:
A discoidal feedthrough capacitor has its active electrode plates disposed within a dielectric body so that an edge of the active electrode plates is exposed at a surface of a through-hole for a conductive lead. The conductive lead is conductively coupled to the exposed edge of the electrode plates without an intervening conductive termination surface. Similarly, a ground electrode plate set of the feedthrough capacitor may have an edge exposed at the outer periphery of the capacitor for conductively coupling the exposed edge of the ground electrode plate to a conductive ferrule without an intervening conductive termination surface.
Abstract:
One or more inductors and one or more capacitors are physically disposed relative to one another in series and are electrically connected to one another in parallel to form a bandstop filter. Chip inductors and chip capacitors having spaced apart conductive terminals are physically arranged in end-to-end abutting relation to minimize electrical potential between adjacent conductive terminals. The bandstop filter may be hermetically sealed within a biocompatible container for use with an implantable lead or electrode of a medical device. The values of the inductors and the capacitors are selected such that the bandstop filter is resonant at one or more selected frequencies, such as an MRI pulsed frequency.
Abstract:
A method for making a deflectable catheter includes positioning a flexible element along a catheter liner. A flexible element distal portion extends along at least a portion of a deflectable distal end portion of the catheter liner. At least one anchor is engaged to the flexible element distal portion. The flexible element resides radially between the catheter liner and a band extending at least part way around a perimeter of the liner. An encapsulant, positioned around at least the flexible element distal portion, forms at least a portion of a sidewall of the deflectable distal end portion of the liner. The anchor and band are within the sidewall so that the encapsulant transmits pushing and pulling forces from the at least one anchor to the deflectable distal end portion of the liner.
Abstract:
A bandstop filter includes a capacitance in parallel with an inductance and is placed in series with the implantable lead of an active implantable medical device, wherein values of capacitance and inductance are selected such that the bandstop filter attenuates RF current flow at a selected center MRI RF pulsed frequency or across a range of frequencies. The Qi of the inductor and the Qc of the capacitor are controlled to reduce the overall Q of the bandstop filter to attenuate current flow through the implantable lead along a range of selected frequencies. In a preferred form, the bandstop filter is integrated into a Tip and/or Ring electrode for the active implantable medical device.
Abstract:
A system is provided for identifying implanted medical devices, leads and systems, as well as objects in close proximity to a patient having an implanted active medical device, using a radio frequency identification (RFID) tag having retrievable information relating to the AIMD, lead system and/or patient. An RFID tag communicator includes a circuit for limiting the total continuous transmit time of an interrogation signal, and a time-out circuit for delaying a second and any subsequent interrogation of the RFID tag.
Abstract:
An energy management system facilitates the transfer of high frequency energy coupled into an implanted abandoned lead at a selected RF frequency or frequency band, to an energy dissipating surface. This is accomplished by conductively coupling the implanted abandoned lead to the energy dissipating surface of an abandoned lead cap through an energy diversion circuit including one or more passive electronic network components whose impedance characteristics are at least partially tuned to the implanted abandoned lead's impedance characteristics.
Abstract:
An energy management system that facilitates the transfer of high frequency energy induced on an implanted lead or a leadwire includes an energy dissipating surface associated with the implanted lead or the leadwire, a diversion or diverter circuit associated with the energy dissipating surface, and at least one switch for diverting energy in the implanted lead or the leadwire through the diversion circuit to the energy dissipating surface. In alternate configurations, the switch may be disposed between the implanted lead or the leadwire and the diversion circuit, or disposed so that it electrically opens the implanted lead or the leadwire when diverting energy through the diversion circuit to the energy dissipating surface. The switch may comprise a single or multi-pole double or single throw switch. The diversion circuit may be either a high pass filter or a low pass filter.