Abstract:
A proppant discharge system has a container with an outlet formed at a bottom thereof and a gate slidably affixed at the outlet so as to be movable between a first position covering the outlet to a second position opening the outlet, and a support structure having an actuator thereon. The container is removably positioned on the top surface of the support structure. The actuator is engageable with gate so as to move the gate from the first position to the second position. A conveyor underlies the container so as to receive proppant as discharged from the container through the outlet. The container is a ten foot ISO container.
Abstract:
A bin sweep comprising a first auger section configured to be movably mounted to a central support framework of a storage bin, and a second auger section operably engaged with the first auger frame such that the second auger section is moveable relative to the first section frame substantially along an axis.
Abstract:
A conveyor belt having a sensor probe extending upward from an outer conveying surface into a mat of bulk products conveyed on the belt. The probe senses a condition of the product mat at a predetermined depth. The probe height above the conveying surface may be fixed or may be adjustable to be positioned at a critical depth within the product mat.
Abstract:
A proppant discharge system has a container with an outlet formed at a bottom thereof and a gate slidably affixed at the outlet so as to be movable between a first position covering the outlet to a second position opening the outlet, and a support structure having an actuator thereon. The container is removably positioned on the top surface of the support structure. The actuator is engageable with gate so as to move the gate from the first position to the second position. A conveyor underlies the container so as to receive proppant as discharged from the container through the outlet. The container is a ten foot ISO container.
Abstract:
A process for pneumatic delivery of water-absorbing polymer particles using curved pipelines, the ratio of radius of curvature to tube diameter being at least 5.
Abstract:
Replaceable intake section (14) of grain auger (10) includes fixed metal elongate support (22) secured to tubular casing (11) and extending beneath flexible intake end flight portion (17) which is connected by a clutch to the main flight of auger (10). Pliable, soft, rubber, safety guard or collar (27) is part-circular in section and extends around flight portion (17). Longitudinal edges on guard (27) normally engage with edges (34) of support (22). If an obstruction, such as an operator's foot, engages the auger intake, free end portions of guard (27) can disengage from edges (34) of elongate support (22) to minimise jamming or injury. Collar (27) may be attached to adjustable slide (25) to vary the length of flighting (17) exposed and thereby alter the rate of feed.
Abstract:
An arcuate guide apparatus and method for collecting and moving material into or away from a selected bin (30a, 30b, 30c) that resides within an array of storage bins. The arcuate guide apparatus comprises three or more trolleys (90, 91, 92, 93, 94, 95a, 95b, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108) that move along at least one track (79, 80, 81, 82, 83, 84, 86a, 86b, 86c, 86d, 86e, 86f, 87a, 87b, 88a, 88b, 89) to create a guide assembly for a conveyor (60) or conveyor groups (67, 68, 69, 70). By moving the trolleys (90, 91, 92, 93, 94, 95a, 95b, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108) along the track (79, 80, 81, 82, 83, 84, 86a, 86b, 86c, 86d, 86e, 86f, 87a, 87b, 88a, 88b, 89), or track (79, 80, 81, 82, 83, 84, 86a, 86b, 86c, 86d, 86e, 86f, 87a, 87b, 88a, 88b, 89) along the trolleys (90, 91, 92, 93, 94, 95a, 95b, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108), the conveyor (60) or conveyor groups (67, 68, 69, 70) can distribute material to or reclaim material from a selected storage bin (30a, 30b, 30c) using minimal amount of linear meters of conveyance (60). The arcuate guide apparatus and method can have multiple layers of guide assemblies (110, 112, 114, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162) to guide conveyor (60) or conveyor groups (67, 68, 69, 70). The arcuate guide apparatus and method can have the guide assemblies (110, 112, 114, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162) combined in a wide variety of configurations that best suits a particular application.
Abstract:
A body (1), feeding a group of enlarged pipes (2) in which straight pipes (6) slide so as to control the discharge of particles. At the exit of these tubes, the particles are propelled towards the periphery by gas jets that originate from perforated tubes (4). A rotating set of plates (3) whose periphery is fitted with brushes (30) having bristles of various dimensions, scatters the particles in such a way so as to distribute them uniformly according to a horizontal plane. A correcting device (9, 11, 12, 13, 14 and 16) that gets its feed of particles from the top of the device enables to set right any mal-distribution by directing an additional partial flow of particles towards an area where the height of the bed is low or uneven. Such a machine can also be used for the loading of silos or of catalytic reactors.
Abstract:
A conveyor apparatus for a particulate material to be conveyed, e.g., a synthetic resin granulate or powder, with a plurality of handling devices (30, 31) for processing the conveyed material, a storage bin (20) for the material to be conveyed, a conveying line (2) provided with a suction probe (1) for withdrawing the material to be conveyed from the storage bin, and a negative pressure source (4) connected to the handling devices via a suction line (7). The handling devices (30, 31) are all connected to a common conveying line (2), and a control member (8) is provided on the suction probe (1) to control the air volume going through the conveying line (2). This control member is controlled by an air pressure sensor (5) disposed on the suction line (7).
Abstract:
A conveying system for distributing material into any bin in a horizontal array of storage bins comprises a circular guide positioned over the array of bins (24), a linear guide (22) that rotates along the circular guide, and a conveyor (30) that is supported by the linear guide. By rotating the linear guide and attached conveyor along the circular guide and by shuttling the conveyor linearly, the conveyor has an infinite number of discharge points to fill any one of the underlying array of bins.