Abstract:
A process for continuously preparing 2-pyrrolidone by reacting gamma-butyrolactone with ammonia in the liquid phase in the presence of water, wherein the reaction is carried out at a temperature of from 275 to 300null C. and an absolute pressure of from 140 to 180 bar.
Abstract:
The invention pertains to a process for cyclizing hydrolysis of an aminonitrile compound to a lactam in the presence of a catalyst. It relates more particularly to a process for cyclizing hydrolysis of an aminonitrile compound in the presence of a solid catalyst of clay type. The invention applies particularly to the preparation of null-caprolactam by cyclizing hydrolysis of aminocapronitrile.
Abstract:
Process for the preparation of a mixture of null-caprolactam and null-caprolactam precursors by reductively aminating 5-formylvaleric acid and/or 5-formylvalerate ester(s) in water with hydrogen and an excess of ammonia in the presence of a hydrogenation catalyst, wherein the process is conducted in a reactor of which the inside reactor wall material is a material containing at most 8 wt. % nickel.
Abstract:
It is an object of the present invention to provide a method for synthesizing null-lactams and a method for manufacturing null-lactams in water of high-temperature and under high-pressure, and the present invention relates to a null-lactam synthesis method which is characterized in that null-lactams are synthesized by reacting null-amino acids in water at high-temperature and under high-pressure, this method being further characterized in that null-lactams are synthesized at a high speed by cyclizing null-amino acids in water at high-temperature and under high-pressure in which the temperature range is 200null C. or higher and the pressure range is 10 MPa or greater, and the present invention also relates to a method for manufacturing null-lactams which is characterized in that null-lactams are synthesized by reacting null-amino acids in water at high-temperature and under high-pressure, and are then separated and purified using a column separation medium.
Abstract:
The invention relates to a method for producing cyclic lactams of formula (II) by reacting a compound (I) of formula (I) with water in the presence of an organic, liquid dilution agent in the liquid phase. In formula (II), n and m respectively can have the values 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 and the sum of n+m is at least 3, preferably at least 4 and R1 and R2 represent C1-C6 alkyl, C5-C7 cycloalkyl or C6-C12 aryl groups. In formula (I), R1, R2, m and n are defined as above and R represents nitrile, carboxylic acid amide and carboxylic acid groups. The inventive method is characterized in that a) compound (I) is reacted with water in the liquid phase in the presence of an organic, liquid dilution agent (III) to form a mixture (IV) containing a lactam (II) and said mixture (IV) is subjected to an aqueous treatment to obtain a two-phase system.
Abstract:
A process for preparing caprolactam by reacting 6-aminocapronitrile with water in the presence of catalysts comprises using a starting mixture of 6-aminocapronitrile and the tetrahydroazepine derivative of the formula and conducting the reaction in liquid phase in the presence of a heterogeneous catalyst. Also describes a process for preparing said tetrahydroazepine derivative I and its use for preparing caprolactam and polycaprolactam.
Abstract:
The present invention relates to a process for regenerating a catalyst for the cyclizing hydrolysis of an aminonitrile for the manufacture of lactams. It relates more particularly to the regeneration of the solid catalysts used in the processes for producing lactams by the cyclizing hydrolysis of aminonitriles. This regeneration process consists in treating the spent catalyst or the catalyst at the end of the cycle at a temperature of between 300° C. and 600° C. with an oxidizing atmosphere.
Abstract:
The present invention provides methods for making N-methylpyrrolidine and analogous compounds via hydrogenation. Novel catalysts for this process, and novel conditions/yields are also described. Other process improvements may include extraction and hydrolysis steps. Some preferred reactions take place in the aqueous phase. Starting materials for making N-methylpyrrolidine may include succinic acid, N-methylsuccinimide, and their analogs.
Abstract:
A process of producing an aliphatic aldehyde-acid (e.g., adipaldehyde-acid) and/or an aliphatic dicarboxylic acid (e.g., adipic acid) comprising oxidizing a cyclic ketone (e.g., cyclohexanone) with molecular oxygen in the presence of a fixed catalyst which comprises a composite of a carrier and at least one metal element belonging to the groups 4 to 11 of the Periodic Table supported on the carrier and has an acid amount of 0.06 mmol/g or more per unit weight of the carrier.
Abstract:
The present invention provides methods for making N-methylpyrrolidine and analogous compounds via hydrogenation. Novel catalysts for this process, and novel conditions/yields are also described. Other process improvements may include extraction and hydrolysis steps. Some preferred reactions take place in the aqueous phase. Starting materials for making N-methylpyrrolidine may include succinic acid, N-methylsuccinimide, and their analogs.