Abstract:
A belt tensioning motor mount comprises a support plate; a motor mount holding a motor, the motor mount slidably attached to the support plate; and a tension adjustor disposed on the support plate, the tension adjustor for adjusting the position of the motor mount along the support plate. In an embodiment, the motor mount includes an opening that accommodates a shaft of the motor, a driver pulley attached to the shaft. A belt is attached to the driver pulley on one side and a return pulley on an opposite side. The support plate is disposed adjacent a wall and above the belt which operates a plurality of sliding doors. In an embodiment, the tension adjustor includes a threaded bolt which, depending on which way turned, either causes the motor mount to slide in a first direction to increase belt tension or slide in a second direction to decrease belt tension.
Abstract:
A drive apparatus for a rotor of a revolving door, wherein the drive apparatus includes a drive device, which is motion-coupled to the rotor via a drive belt. The drive apparatus further includes a tensioning device for tensioning and deflecting the drive belt, wherein the drive belt connects the drive device, the tensioning device and the rotor. The tensioning device and/or the drive device are mounted with a variable distance between one another, so that an extension of the drive belt caused by acceleration or deceleration of the rotor is compensated by varying the distance between the tensioning device and the drive device.
Abstract:
A door cable pulley system for use with a motor vehicle having a closure movable between an open and closed position. The door cable pulley system includes a first tension pulley, a second tension pulley, a cable drum driven by a motor, and a pair of drive cables. The first drive cable includes a first end coupled to the cable drum and a second end coupled to the closure, where the first drive cable extends from the cable drum, passes over the first tension pulley, and exits the body through the second exit opening. The second drive cable includes a first end coupled to the cable drum and a second end coupled to the closure, where the second drive cable extends from the cable drum, passes over the second tension pulley, and exits the body through the first exit opening.
Abstract:
The disclosure is directed to motorized closure assembly, comprising: an opening frame configured to fit around the opening; a substantially rectangular closure slab having a closure slab frame configured to surround the substantially rectangular closure slab and sealingly fit within the opening frame; and a motorized driver, wherein the motorized driver is entirely embedded within the closure slab frame or within a combination of the closure slab frame and the opening frame, the motorized driver con figured to slidably move the slab between an open position and a closed position.
Abstract:
The present invention discloses a drive apparatus for a rotor of a revolving door, wherein the drive apparatus comprises a drive device, which is motion-coupled to the rotor via a drive belt. The drive apparatus further comprises a tensioning device for tensioning and deflecting the drive belt, wherein the drive belt runs via the drive device and via the tensioning device. The tensioning device and/or the drive device are mounted with a variable distance between one another, so that an extension of the drive belt caused by acceleration or deceleration of the rotor is compensated by varying the distance between the tensioning device and the drive device.
Abstract:
Disclosed are alternate embodiments of various components of a barrier operator system. and methods of operation, including of the mechanical drive subsystem with segmented and self-locking rail unit, rail mounting supports, belt and chain drive tensioning, and drive assembly carriage and interface; the electronics and software routines for controlled operation of the various barrier operator functions; wall console communications with the barrier operator; encryption and decryption of access codes; establishment and monitoring of travel limits and barrier speed and force profiles; thermal protection of barrier operator drive motors; and establishment and control of communications from the barrier operator to accessories by way of a wireless adapter.
Abstract:
The disclosure is directed to motorized closure assembly, comprising: an opening frame configured to fit around the opening; a substantially rectangular closure slab having a closure slab frame configured to surround the substantially rectangular closure slab and sealingly fit within the opening frame; and a motorized driver, wherein the motorized driver is entirely embedded within the closure slab frame or within a combination of the closure slab frame and the opening frame, the motorized driver configured to slidably move the slab between an open position and a closed position.
Abstract:
Drive assembly for a door, gate or barrier, having a rail or track, a trolley for connection to the door, gate or barrier, mountable to run along the rail or track, and a longitudinal drive having a chain or belt connectable in a closed loop arrangement around or within the rail or track. The trolley is provided with an engagement mechanism for selective engagement between the trolley and the longitudinal drive mechanism, whereby the engagement mechanism includes an engagement member arranged for selective movement in a direction substantially transverse to the longitudinal direction of the longitudinal drive and in a direction less than 45° from the plane of the loop of the longitudinal drive. The engagement member includes or cooperates with a cam part arranged for selective rotation about the engagement member, and a camming cooperation occurs between the cam part and the trolley body for converting rotation of the cam part about the engagement member into the required movement of the engagement member.
Abstract:
Disclosed are alternate embodiments of various components of a barrier operator system. and methods of operation, including of the mechanical drive subsystem with segmented and self-locking rail unit, rail mounting supports, belt and chain drive tensioning, and drive assembly carriage and interface; the electronics and software routines for controlled operation of the various barrier operator functions; wall console communications with the barrier operator; encryption and decryption of access codes; establishment and monitoring of travel limits and barrier speed and force profiles; thermal protection of barrier operator drive motors; and establishment and control of communications from the barrier operator to accessories by way of a wireless adapter.
Abstract:
Disclosed are alternate embodiments of various components of a barrier operator system. and methods of operation, including of the mechanical drive subsystem with segmented and self-locking rail unit, rail mounting supports, belt and chain drive tensioning, and drive assembly carriage and interface; the electronics and software routines for controlled operation of the various barrier operator functions; wall console communications with the barrier operator; encryption and decryption of access codes; establishment and monitoring of travel limits and barrier speed and force profiles; thermal protection of barrier operator drive motors; and establishment and control of communications from the barrier operator to accessories by way of a wireless adapter.