Abstract:
A robot includes: a moving mechanism; a position recognition section that recognizes a current position of the robot within a guide zone having at least one guide location; and a movement control section that moves the robot to each of guide locations in the guide zone by using the moving mechanism, while causing the position recognition section to recognize the current position. The robot further includes a transmission section that transmits, every time the robot moves to each of the guide locations, contents information corresponding to the guide location to a mobile receive terminal held by a person to be guided near the robot.
Abstract:
A method for remotely monitoring a patient. The method includes generating and transmitting input commands to the robot from a remote station. The remote station may include a personal computer that is operated by a doctor. The input commands can move the robot so that a video image and sounds of the patient can be captured by a robot camera and microphone, respectively, and transmitted back to the remote station. The robot may also have a monitor and a speaker to allow for two-way videoconferencing between the patient and a doctor at the remote station. The robot can move from room to room so that a doctor can make “patient rounds” within a medical facility. The system thus allows a doctor visit patients from a remote location, thereby improving the frequency of visits and the quality of medical care.
Abstract:
The system constructs a robot autonomously move by simply inputting a rough path. The system has a path-setting unit for setting the path of a mobile apparatus according to the inputted path, a measuring unit for measuring an environment in which the mobile apparatus exists, an extracting unit for extracting an object existence region in the environment according to the values measured by the measuring unit, a judging unit that judges the validity of the path according to the path set by the path setting unit and to the object existence region extracted by the extracting unit, a position determining unit that determines a target position to which the mobile apparatus is to move by selecting it from the portions of the path judged as valid, and a movement controller for controlling the mobile apparatus to move to the target position.
Abstract:
The methods of the invention provide a variety of processes that may be performed by a mobile retail system or a mobile robot system. In accordance with one process, the invention provides a method of facilitating a retail environment, comprising the steps of providing a mobile system for operation in the retail environment, the mobile system including a processor portion, a memory portion storing retail data relating to retail activity, the processor portion storing data in the memory portion and retrieving data from the memory portion, an interaction portion, and a transport portion. The method further includes traveling from at least a first location to a second location by the mobile system; monitoring the retail environment by the mobile system; and accepting input from a customer in the retail environment by the mobile system. Various other operations may be performed by the mobile system in accordance with the system and method of the invention.
Abstract:
A camera or other sensing unit senses the conditions of articles and mobile entities, including humans within a living space. An article management/operation server manages, within an article database, attribute information about the articles, including operators, according to the information from the sensing unit. The server receives a user's instruction, input through a console unit, and refers to the article database to convert this instruction into a control command, which is then transmitted to a life-support robot.
Abstract:
A sensing unit, such as a camera, or the like, senses the conditions of articles and mobile existences, including humans, in a life space, such as a house of a household, or the like. An article management/operation server manages, on an article database, attribute information of the articles, which include operators, etc., according to the information from the sensing unit. The server receives a user's instruction input through a console unit and refers to the article database to convert this instruction to a control command, which is then transmitted to a life-support robot.
Abstract:
A robotic system that includes a remote controlled robot. The robot may include a camera, a monitor and a holonomic platform all attached to a robot housing. The robot may be controlled by a remote control station that also has a camera and a monitor. The remote control station may be linked to a base station that is wirelessly coupled to the robot. The cameras and monitors allow a care giver at the remote location to monitor and care for a patient through the robot. The holonomic platform allows the robot to move about a home or facility to locate and/or follow a patient.
Abstract:
A robotic system that includes a remote controlled robot. The robot may include a camera, a monitor and a holonomic platform all attached to a robot housing. The robot may be controlled by a remote control station that also has a camera and a monitor. The remote control station may be linked to a base station that is wirelessly coupled to the robot. The cameras and monitors allow a care giver at the remote location to monitor and care for a patient through the robot. The holonomic platform allows the robot to move about a home or facility to locate and/or follow a patient.
Abstract:
A robotic system that includes a remote controlled robot. The robot may include a camera, a monitor and a holonomic platform all attached to a robot housing. The robot may be controlled by a remote control station that also has a camera and a monitor. The remote control station may be linked to a base station that is wirelessly coupled to the robot. The cameras and monitors allow a care giver at the remote location to monitor and care for a patient through the robot. The holonomic platform allows the robot to move about a home or facility to locate and/or follow a patient.
Abstract:
A robot that is capable of substantially autonomous movement includes a processing device, a memory, and a mobility structure controlled by the processing device. The processor directs the robot to move with any predetermined safe area having a boundary and a reference point. Optionally, the robot also exhibits features of social interactivity by accepting an input from a human, selecting dynamic content from a data base wherein the dynamic content is responsive to the input, and presenting the human with a response corresponding to the dynamic content selection.