Abstract:
Multi-transmitter interference caused by one or more interfering own-cell and/or other-cell transmitters is reduced in a RAKE-based receiver. The RAKE-based receiver comprises a plurality of RAKE fingers, a processor and a combiner. The plurality of RAKE fingers are configured to despread received symbols, wherein a delay for a first one of the plurality of RAKE fingers corresponds to a symbol of interest transmitted by a first transmitter and a delay for a second one of the plurality of RAKE fingers corresponds to an interfering symbol transmitted by a second transmitter. The processor is configured to determine a cross-correlation between the symbol of interest and the interfering symbol. The combiner is configured to combine the symbol of interest with the interfering symbol using the cross-correlation to reduce interference attributable to the interfering symbol from the symbol of interest.
Abstract:
A wireless communication device includes a Generalized RAKE (G-RAKE) receiver circuit that is configured to determine a traffic-to-pilot gain scaling parameter as part of the impairment correlation determination process that underlies (G-RAKE) combining weight generation. In this manner, the receiver circuit conveniently and accurately accounts for gain differences between the pilot channel of a received CDMA signal, as used for channel estimation, and the traffic channel(s) of the CDMA signal, which carry received data to be recovered. The gain difference accounting enables proper demodulation of amplitude-modulated traffic signals. By way of non-limiting example, such gain scaling may be used for demodulating/decoding High Speed Downlink Packet Access (HSDPA) signals used in Wideband Code Division Multiple Access (W-CDMA) systems.
Abstract:
A wireless communication receiver, such as the receiver included in a wireless communication transceiver implemented in a base station or in a mobile station of a wireless communication network, includes a parametric G-RAKE receiver circuit and a method that compute parametric scaling parameters on a per transmission interval basis. In one embodiment, measured impairment correlations are obtained for an individual transmission slot and used to estimate instantaneous values of the scaling parameters. One or both of those instantaneous values are then constrained according to one or more defined limits. In other embodiments, multiple transmission slots are used to increase the number of measurements available to estimate the scaling parameters, with parameter constraining optionally applied. Further embodiments use iterative methods and/or solve for one parameter, and use the results to obtain the other parameter(s). One or more of these embodiments can be improved through the use of error correction/detection information.
Abstract:
An adaptive generalized matched filter (AGMF) rake receiver system includes a rake receiver and an AGMF weight determination module. The rake receiver is coupled to a spread spectrum input signal and applies a vector of weight signals to the spread spectrum input signal to compensate for dependant noise and generate a decision variable. The AGMF weight determination module monitors the decision variable and generates the vector of weight signals, wherein optimal values for the vector of weight signals are calculated by the AGMF weight determination module by varying the vector of weight signals until the signal to noise ratio of the decision variable reaches a peak value
Abstract:
A receiver circuit suppresses effects of “benign” impairment from the calculation of received signal quality estimates, such that the estimate depends primarily on the effects of non-benign impairment. For example, a received signal may be subject to same-cell and other-cell interference plus noise, which is generally modeled using a Gaussian distribution, and also may be due to certain forms of self-interference, such as quadrature phase interference arising from imperfect derotation of the pilot samples used to generate channel estimates for the received signal. Such interference generally takes on a distribution defined by the pilot signal modulation, e.g., a binomial distribution for binary phase shift keying modulation. Interference arising from such sources is relatively “benign” as compared to Gaussian interference and thus should be suppressed or otherwise discounted in signal quality calculations. Suppression may be based on subtracting benign impairment correlation estimates from total impairment correlation estimates, or on filtering the benign impairment in channel estimation.
Abstract:
A receiver receives signals which are at least partially known and which have followed a plurality of different paths to said receiver. The receiver has an arrangement for dividing the area of coverage of said receiver into a plurality of sections. A plurality of receiving units are provided to process a different one of said signals to identify the at least partially known part of said signal. A controller is coupled to the output of said dividing arrangement for selecting the signals which are to be allocated to the respective receiving units and an interference removing arrangement is coupled to the output of the receiver units to remove interference.
Abstract:
A processing circuit and method generate signal quality estimates based on scaling measured inter-symbol interference (ISI) in a received signal according to a cancellation metric corresponding to ISI cancellation performance of the receiver. By accounting for ISI cancellation performance of the receiver based on a simple scaling metric, accurate received signal quality measurements are obtained in a manner that accounts for un-cancelled ISI in the received signal without requiring use of potentially complex multipath combining weight calculations in the signal quality calculation. Signal quality estimation results may be used for sending corresponding Channel Quality Indicators, communication link transmit power control commands, etc. In some embodiments, the cancellation metric is maintained as a dynamic value based on measured ISI cancellation performance, while in other embodiments the cancellation metric comprises a pre-configured value stored in memory, for example.
Abstract:
Disclosed is a chip-level or a symbol-level equalizer structure for a multiple transmit and receiver antenna architecture system that is suitable for use on the WCDMA downlink. The equalizer structure takes into account the difference in the natures of inter-antenna interference and multiple access interference and suppresses both inter-antenna interference and multiple access interference (MAI). Enhanced receiver performance is achieved with a reasonable implementation complexity. The use of the CDMA receiver architecture, in accordance with this invention, enables the realization of increased data rates for the end user. The CDMA receiver architecture can also be applied in conjunction with space-time transmit diversity (STTD) system architectures.
Abstract:
An exemplary receiver demodulates an amplitude modulated data signal received in association with a reference signal, wherein a transmit power of the data signal is unknown to the receiver circuit, by determining a scaling factor based on the reference and data signals. Thus, an exemplary receiver estimates scaling factors indicative of the received amplitude of a data channel signal that is transmitted at a power different from that of the reference channel being used to estimate the radio channel properties. The scaling factor may be used to correct the amplitude of information symbols recovered from a received data signal such that they are moved closer in amplitude to intended points within an amplitude modulation constellation and/or to scale nominal points in a reference constellation used in demodulating the received symbols.
Abstract:
Methods of recovering information encoded in a spread spectrum signal transmitted according to a spreading sequence in a communications medium are provided in which a spread spectrum signal is received from the communications medium and correlated with a spreading sequence to produce a plurality of time-offset correlations. Some of these time-offset correlations may be designed to cancel out known interfering signals. A subset of the plurality of time-offsets may then be selected, and corresponding traffic correlations may then be combined using a weighted combination to estimate information encoded in the transmitted spread spectrum signal. Receivers for implementing these methods are also provided.