摘要:
Methods of recovering information encoded in a spread spectrum signal transmitted according to a spreading sequence in a communications medium are provided in which a spread spectrum signal is received from the communications medium and correlated with a spreading sequence to produce a plurality of time-offset correlations. Some of these time-offset correlations may be designed to cancel out known interfering signals. A subset of the plurality of time-offsets may then be selected, and corresponding traffic correlations may then be combined using a weighted combination to estimate information encoded in the transmitted spread spectrum signal. Receivers for implementing these methods are also provided.
摘要:
The quality of a received signal in a non-linear receiver is estimated using a coupling matrix G or Q that describes the interaction of symbols in the received signal with other symbols and/or how the impairment (noise and interference) interacts in the received signal. The coupling matrix is also useful for joint detection. The signal quality estimate may include, e.g., the minimum eigenvalue, and other functions, such as the determinant and trace of the coupling matrix. When G or Q varies with each block, as in CDMA systems employing longcode scrambling, a representative matrix can be used, such as a matrix of RMS values or average magnitudes of real and imaginary components. The signal quality estimate can be expressed as a bit error rate (BER).
摘要:
A receiver comprises plural receive antennas and electronic circuitry. The plural receive antennas are configured to receive, on plural subcarriers transmitted over a radio interface, a frequency domain signal that comprises contribution from a block of time domain symbols. The electronic circuitry is configured or operable to perform symbol detection of time domain symbols comprising the block by performing a multi-stage joint detection procedure comprising plural stages, and thus serves as a detector (40). For a first stage the block is divided into a first number of sub-blocks each having a sub-block first size. For a second stage the block is divided into a second number of sub-blocks each having a sub-block second size, the sub-block second size being greater than the sub-block first size. For each stage a detector (40) formulates frequency domain combining weights and uses the frequency domain combining weights for combining multiple receive versions of each subcarrier to provide candidate symbol combination values for symbols in each sub-block of the respective stage. For the second stage the detector (40) is further configured to use the candidate symbol combination values of the first stage to formulate joint hypotheses to serve as candidates for the joint detection operation of the second stage.
摘要:
A pilot channel signal for time-division multiplexing with one or more traffic channel signals in a broadcast/multi-cast signal and for code-division multiplexing with a continuously transmitted pilot channel signal is described. In an exemplary method for transmitting a broadcast/multicast signal, a pilot symbol sequence is obtained for each slot of one or more frames of the broadcast/multicast signal, so that the pilot symbol sequence varies for each slot of a given frame. The pilot symbol sequence for each slot is spread with a channelization code, and the spread pilot symbol sequence for each slot is scrambled, using a scrambling code, to form a first pilot channel signal. The first pilot channel signal is transmitted so that it is time-division multiplexed with one or more traffic channel signals transmitted during each slot and code-division multiplexed with a second pilot channel signal transmitted during all slots of the one or more frames.
摘要:
In one of its aspects, the technology concerns a method of processing a signal which includes physical data channels which have been channelized using spreading codes. The method comprises (1) despreading unoccupied spreading codes (e.g., codes which are essentially unobscured by traffic data) included in the signal to obtain unoccupied code despread values, (2) using the unoccupied code despread values to form an impairment covariance matrix; and (3) using the impairment covariance matrix along with a channel estimate to form a processing parameter. The processing parameter can be one of combining sets and a signal quality estimate. In another of its aspects, the technology concerns a coherent, linear equalizer apparatus configured to process a signal which includes physical data channels which have been channelized using spreading codes. The equalizer apparatus comprises plural delay fingers (32) configured to despread unoccupied spreading codes included in the signal to obtain unoccupied code despread values, and a generator (60) configured to use the unoccupied code despread values to form an impairment covariance matrix.
摘要:
A node (e.g., base station, signal processing unit) is described herein that includes a symbol detector and a method which are capable of suppressing interference caused by one user device (which may be in softer handoff mode) to reduce performance degradation to other intra-cell user devices and/or other inter-cell user devices (which may not be in softer handoff mode).
摘要:
Multi-transmitter interference caused by one or more interfering own-cell and/or other-cell transmitters is reduced in a RAKE-based receiver. The RAKE-based receiver comprises a plurality of RAKE fingers, a processor and a combiner. The plurality of RAKE fingers are configured to despread received symbols, wherein a delay for a first one of the plurality of RAKE fingers corresponds to a symbol of interest transmitted by a first transmitter and a delay for a second one of the plurality of RAKE fingers corresponds to an interfering symbol transmitted by a second transmitter. The processor is configured to determine a cross-correlation between the symbol of interest and the interfering symbol. The combiner is configured to combine the symbol of interest with the interfering symbol using the cross-correlation to reduce interference attributable to the interfering symbol from the symbol of interest.
摘要:
Methods and apparatus are disclosed for suppressing both own-cell and other-cell interference in the processing of multiple signals of interest in a received composite signal. In an exemplary embodiment of the methods disclosed herein, combining weights for each of a first plurality of signals of interest in a composite information signal are computed, based on first shared signal correlation data computed from the composite information signal. A reduced-interference composite signal is calculated from the composite information signal, using, for instance, subtractive interference cancellation or interference projection techniques. Combining weights for processing each of a second plurality of signals of interest are computed as a function of second shared signal correlation data corresponding to the reduced-interference composite signal. Corresponding apparatus, including G-Rake and chip equalizer embodiments are also disclosed.
摘要:
Teachings presented herein combine the relative simplicity of equalization with the performance of maximum likelihood (ML) processing. These teachings are applied to the detection of symbols in a stream of symbol blocks. In one or more embodiments, block-based equalization, including feedforward filtering, suppresses inter-block interference and produces detection statistics for the symbols in each symbol block, and joint detection addresses intra-block interference by jointly detecting the most likely combination of symbols within each symbol block, based on the corresponding detection statistics. The joint detection obviates the need to address intra-block interference within the equalization filters, while, at the same time, the block-based equalization produces detection statistics for each symbol block thereby simplifying the joint detection process. Overall complexity is less than would be needed for full MLSE processing of the symbol blocks without equalization preprocessing, while performance is close to or on par with full MLSE processing.
摘要:
The teachings presented herein improve the processing of individual signals of interest included in a received composite signal by computing combining weights and/or signal quality estimates for each signal of interest, e.g., for linear equalization, based on either shared or non-shared correlation estimates. As a non-limiting advantage, the use of shared correlation estimates reduces computational loading as compared to the processing load that would be needed for computing non-shared correlation estimates for all signals of interest. As a further non-limiting advantage, the conditional use of shared and non-shared correlation estimates provides for the use of non-shared correlation estimates where signal characteristic(s) of one or more of the signals of interest warrant such usage, e.g., for one or more high-rate signals of interest.