Abstract:
A method and apparatus are provided for smoothly blending analog and digital portions of a composite digital audio broadcast signal by using look ahead metrics computed from previously received audio frames to dynamically adjust either stereo separation or bandwidth or both of the digital audio portion of the digital audio broadcast signal to produce an adjusted digital audio portion that is blended with the analog audio portion.
Abstract:
A method includes: constructing complementary low density parity check codewords by generating a first codeword having a first code rate; and partitioning the first codeword by assigning groups of bits of the first codeword to four quarter-partitions, wherein each of the quarter partitions includes bits in one half of one of four independently decodable semi-codewords each having a second code rate that is larger than the first code rate. Receivers that receive signals produced by the method are also disclosed.
Abstract:
A method of transmitting digital information includes: receiving a plurality of information bits representing audio information and/or data; encoding the information bits using complementary low density parity check coding to produce a composite codeword and a plurality of independently decodable semi-codewords; modulating at least one carrier signal with the forward error corrected bits; and transmitting the carrier signal(s). Transmitters that implement the method, and receivers that receive signals produced by the method, are also provided.
Abstract:
A method and apparatus are provided for blending analog and digital portions of a composite digital audio broadcast signal by using look ahead metrics computed from previously received audio frames to guide the blending process and prevent unnecessary blending back and forth between analog and digital if the look ahead metrics indicate that future digital signal quality is degraded or impaired.
Abstract:
A method for processing a radio signal includes: receiving a signal on two antennas; demodulating the signal using first and second independent signal paths that are synchronized by symbol number; maximum ratio combining branch metrics from the two receiver paths; and using the combined branch metrics to produce an output, wherein the receiver paths include an arbitration scheme. A receiver that implements the method is also provided.
Abstract:
A method for processing a digital signal includes: receiving a plurality of protocol data units, each having a header including a plurality of control word bits; and a plurality of audio frames, each including a cyclic redundancy check code; decoding the protocol data units using an iterative decoding technique, wherein the iterative decoding technique uses a soft output decoding algorithm for iterations after the first iteration; and using decoded cyclic redundancy check codes to flag the audio frames containing errors. A receiver that implements the method is also provided.
Abstract:
In one embodiment, a receiver front end circuit can receive and process multiple radio frequency (RF) signals and output downconverted signals corresponding to these signals. In turn, multiple signal processors can be coupled to this front end. Specifically, a first signal processor can receive and process the downconverted signals to output a first signal obtained from content of a first RF signal, and a second signal processor can receive and process the downconverted signals to output a second signal obtained from content of a second RF signal. In addition, the apparatus may include a detection circuit coupled to the receiver front end circuit to detect presence of at least the second signal and enable the second signal processor responsive to the detected presence.
Abstract:
Certain embodiments herein are directed to optimized decoding of in-band on-channel (IBOC) services, such as audio, traffic, and data associated with HD Radio™. Service information, such as service boundaries for one or more segments associated with IBOC services, may be identified and formatted for transmission to a receiver device. The receiver device may use the service boundaries to select or filter segments associated only with a service of interest from a bit stream of segments associated with one or more other services, according to one embodiment.
Abstract translation:本文中的某些实施例涉及带内在线(IBOC)服务(例如音频,业务和与HD Radio TM相关联的数据)的优化解码。 服务信息,例如与IBOC服务相关联的一个或多个段的服务边界,可以被识别和格式化以便传输到接收机设备。 根据一个实施例,接收机设备可以使用服务边界来从与一个或多个其他服务相关联的段的比特流中选择或过滤与感兴趣的服务相关联的段。
Abstract:
A method for specifying content of interest using a digital radio broadcast receiver is described. A digital radio broadcast signal includes first audio content and first program data, wherein the first program data includes information identifying a first item, and includes second audio content and second program data, wherein the second program data includes information identifying a second item. A user command entered at a user interface during reception of audio content is registered, indicating a user's interest in either the first or second audio content. It is determined whether there is an ambiguity in the content of interest. If there is an ambiguity, a first data structure is stored for the first audio content, and a second data structure is stored for the second audio content. The first data structure includes the information identifying the first item, and the second data structure includes the information identifying the second item.
Abstract:
A method and apparatus are provided for smoothly blending analog and digital portions of a composite digital audio broadcast signal by using look ahead metrics computed from previously received audio frames to dynamically adjust either stereo separation or bandwidth or both of the digital audio portion of the digital audio broadcast signal to produce an adjusted digital audio portion that is blended with the analog audio portion.