Abstract:
An isolated gate driver includes a first input terminal to receive gate information and one or more input terminals to receive configuration information. A modulation circuit generates a modulated signal having four possible states, each of the four possible states corresponding to a different unique pair of values of the gate information and the configuration information. The modulation circuit represents two of the states using on-off keying (OOK) while the configuration information is at a first value and represents two of the states as a modification to the OOK modulation based on the configuration information being at a second value. The modulated signal is sent over an isolation communication channel coupling a transmitter and receiver of the isolated gate driver.
Abstract:
In one form, an integrated circuit includes a negative voltage detector circuit and a logic circuit. The negative voltage detector circuit has a power supply input coupled to a power supply voltage terminal, a ground input coupled to a ground voltage terminal, a first input coupled to a first signal terminal, a second input coupled to a second signal terminal, and an output for providing an enable signal when a voltage on the first signal terminal is less than a voltage on the ground voltage terminal by at least a predetermined amount when a signal on said second signal terminal is in a first predetermined logic state. The logic circuit has an input for receiving the enable signal. The logic circuit changes an operation of the integrated circuit in response to an activation of the enable signal.
Abstract:
In one embodiment, a receiver front end circuit can receive and process multiple radio frequency (RF) signals and output downconverted signals corresponding to these signals. In turn, multiple signal processors can be coupled to this front end. Specifically, a first signal processor can receive and process the downconverted signals to output a first signal obtained from content of a first RF signal, and a second signal processor can receive and process the downconverted signals to output a second signal obtained from content of a second RF signal. In addition, the apparatus may include a detection circuit coupled to the receiver front end circuit to detect presence of at least the second signal and enable the second signal processor responsive to the detected presence.
Abstract:
In an example, a method includes: in a first mode, causing a first tuner of an entertainment system to receive and process a first RF signal from a first antenna configured for a first band to output a first audio signal of a first radio station and causing a second tuner of the entertainment system to receive a second RF signal from a second antenna configured for the first band to determine signal quality metrics for one or more radio stations of the first band; in a second mode, causing the first tuner to output a first signal representation of the first RF signal and causing the second tuner to receive and process the second RF signal to output a second signal representation of the second RF signal; and causing a phase diversity combining circuit to process the first and second signal representations to output an audio signal of the first radio station, without disruption of output from the entertainment system of a broadcast of the first radio station.
Abstract:
In one embodiment, an integrated circuit includes: a first input pad to receive a radio frequency (RF) signal; a radio receiver to process the RF signal and output a digitally processed signal; an analog filter to receive a digital signal via an input signal path and output a drive signal via an output signal path; and a first output pad coupled to the output signal path to output a filtered digital signal based on the drive signal.
Abstract:
An isolated gate driver has a first portion in a first voltage domain and a second portion in a second voltage domain. The first and second portions are coupled by an isolation communication channel. The isolated gate driver transmits across the isolation communication channel a serial word containing first drive strength information and simultaneously transmits gate information with the serial word across the isolation communication channel. The gate information indicates a state of a gate signal for a transistor coupled to the second portion of the isolated gate driver. A demodulator circuit demodulates a signal containing the gate information and the drive strength information transmitted across the isolation communication channel in the serial word. A gate signal output circuit coupled to the demodulator circuit supplies the gate signal based on the gate information with a drive strength of the gate signal being based on the drive strength information.
Abstract:
In an example, a method includes: in a first mode, causing a first tuner of an entertainment system to receive and process a first RF signal from a first antenna configured for a first band to output a first audio signal of a first radio station and causing a second tuner of the entertainment system to receive a second RF signal from a second antenna configured for the first band to determine signal quality metrics for one or more radio stations of the first band; in a second mode, causing the first tuner to output a first signal representation of the first RF signal and causing the second tuner to receive and process the second RF signal to output a second signal representation of the second RF signal; and causing a phase diversity combining circuit to process the first and second signal representations to output an audio signal of the first radio station, without disruption of output from the entertainment system of a broadcast of the first radio station.
Abstract:
Radio frequency (RF) receivers having whitened digital frame processing and related methods are disclosed. Disclosed embodiments whiten frequency domain interference generated periodic current pulses from by digital frame processing by applying a variable time delay to the frame control signals that initiate digital frame processing. For one embodiment, the variable time delay is achieved by waiting a variable number of digital clock cycles for each digital frame processing cycle. Still further, a variable number of no operation (NO-OP) cycles can be performed at the beginning of each frame processing cycle to provide the variable time delay for the variable number of digital clock cycles. Other variable time delay techniques could also be utilized while still taking advantage of the whitened digital frame processing embodiments described herein.
Abstract:
A scan controller provides a translation between a two terminal external interface and a four signal line internal scan interface to a digital core of the integrated circuit. The two terminal external interface has an input terminal and an input/output terminal. The input terminal receives a clock signal and the input/output terminal serially receives a scan enable signal and a scan in data bit. A state machine controls the scan controller. The scan in data bit, the scan enable signal, and a scan clock signal are supplied in parallel to the internal scan interface. The digital logic provides a scan out data bit and the scan controller supplies the scan out data bit over the input/output terminal in synchronism with the clock signal.
Abstract:
In an example, a method includes: in a first mode, causing a first tuner of an entertainment system to receive and process a first RF signal from a first antenna configured for a first band to output a first audio signal of a first radio station and causing a second tuner of the entertainment system to receive a second RF signal from a second antenna configured for the first band to determine signal quality metrics for one or more radio stations of the first band; in a second mode, causing the first tuner to output a first signal representation of the first RF signal and causing the second tuner to receive and process the second RF signal to output a second signal representation of the second RF signal; and causing a phase diversity combining circuit to process the first and second signal representations to output an audio signal of the first radio station, without disruption of output from the entertainment system of a broadcast of the first radio station.