Abstract:
The present invention provides an EL panel, an EL illumination device, and an EL display device in which irregularity of luminance does not easily occur in the in-plane of the EL element by a protection sheet for suppressing conduction of heat on the outermost surface of the EL element. There is an EL panel including: a light-transmissive substrate; an EL element including a light-emitting medium layer interposed between a cathode and an anode, the EL element being provided on one surface of the light-transmissive substrate; and a protection sheet on the other surface of the light-transmissive substrate of the EL element. The protection sheet has a surface opposite to the light-transmissive substrate, the shape of the surface includes rounded convex shapes and prism shapes. Each of the rounded shapes has an apex that is a center point of a cross-section farthest from a bottom surface where the cross-section is parallel to the bottom surface of the unit convex shape and the area becomes smaller in a direction from the bottom surface of the rounded convex shape to a top portion thereof. Irregularity of luminance in the in-plane of the EL element does not easily occur by optimizing the height of the apex and the distance between the apexes.
Abstract:
A light emitting unit (60) is provided with a resin container (61) in which a recessed portion (61a) is formed, an anode lead portion (62) and a cathode lead portion (63) which are provided so as to be exposed on the bottom surface of the recessed portion (61a), a semiconductor light emitting element (64) attached to the cathode lead portion (63) on the bottom surface (70) of the recessed portion (61a), and a sealing resin (65) provided so as to cover the recessed portion (61a). The resin container (61) is produced from a white resin containing titania as a coloring agent. The anode lead portion (62) and the cathode lead portion (63) are each configured by forming a silver-plated layer with the gloss level set in the range of 0.3-1.0 inclusive on a metal plate based on a copper alloy or the like. Thus, the efficiency of extraction of light outputted from the light emitting unit is improved.
Abstract:
The present invention aims to prevent breakage of a sealing part and an electrode of a high pressure discharge lamp, and provides an electrode 100 used for a discharge lamp and having a rod-shaped part 101, one end of the rod-shaped part 101 to be sealed by a sealing part of an arc tube of the discharge lamp, the other end of the rod-shaped part 101 to be in a discharge space in the arc tube, wherein the rod-shaped part 101 has a rough surface that is composed of a plurality of types of crystal grains each having a different surface condition due to differences in crystal orientation.
Abstract:
An apparatus for providing a photoluminescent light source is disclosed. In one embodiment, the apparatus comprises a light source that emanates light of a particular spectrum, photoluminescent material which converts light from the light source to light of another spectrum, and a selective mirror which reflects light generated by the light source and transmits light generated by the photoluminescent material. The photoluminescent material may be arranged so as to provide a plurality of light sources that emanate light of various colors. In an embodiment, the photoluminescent material is situated in small regions within a transparent material and lenses are used to collimate light emitted from the small regions.
Abstract:
A light-emitting device which is manufactured by a simple manufacturing method and which efficiently extracts light emitted from an emissive layer outward to improve the light extraction efficiency. The light-emitting device comprises a first electrode, a second electrode and an emissive layer disposed between them and extracts a part of light emitted from the emissive layer as radiated light. In this light-emitting device, the first electrode, the nano-structure layer for extracting the radiated light, and a gap having a refractive index lower than an average refractive index of the emissive layer and a nano-structure layer, are arranged in that order in a direction in which the radiated light is extracted.
Abstract:
An organic light emitting display and a method of fabricating the same are disclosed. The organic light emitting display may include a transistor on a substrate, a lower electrode on the substrate, the lower electrode being electrically connected to the transistor, an organic light emitting layer on the lower electrode, an upper electrode on the organic light emitting layer, and a buffer layer formed on the upper electrode to modify a predetermined thickness of the upper electrode to be a non-conductive material.
Abstract:
A dielectric barrier Xe discharge lamp include discharge vessel with a gas filling containing Xe or a Xe/Ne mixture and a luminescent layer of a UV-B phosphor emitting in the UV-B range 280 to 320 nm. The luminescent layer includes a Gd3+ activated phosphor according to at least one the formulas of (Y1-x-yGdxSy)Al3(BO3)4, (La1-x-yGdxSy)Al3(BO3)4, (La1-x-yGdxSy)B3O6, (Y1-x-y-zGdxSyLuz)PO4, (Y1-x-y-zGdxSyLuz)BO3, (Y1-x-y-zGdxSyLuz)3Al5O12, Me(Y1-x-yGdxSy)F4 (Me=Li, Na, K; S═Bi, Nd, Pr; 0.0
Abstract:
A plasma display panel (PDP) protective layer including a ternary compound in the form of BaXO, wherein X is selected from the group consisting of Sc, Y, Gd, La, Er, Ho, Nd, Sm, and Ce. Such protective layer has excellent electron emission characteristics and phase stability.
Abstract:
A polarizer and an organic light emitting display apparatus including the polarizer. According to an embodiment of the present invention, a polarizer includes a substrate and a plurality of electrode units separated from each other on the substrate and formed in a stripe pattern. Each of the electrode units includes a first surface facing the substrate and a second surface opposite the first surface, the first surface having a width smaller than a width of the second surface.
Abstract:
A color filter preventing the occurrence of cross-talk between colors while improving light extraction efficiency, a method of manufacturing the color filter, and a light-emitting device are provided. The color filter includes: a plurality of color filter layers for a plurality of colors arranged on a substrate, a plurality of projections arranged in contact with the color filter layers, the projections of which parts on a side closer to the color filter layers are connected to one another; and a reflecting mirror film formed so as to be laid over a side surface of each of the plurality of projections.